УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «09» апреля 2025 г. № 706

Регистрационный № 91827-24

Лист № 1 Всего листов 58

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы портативные КИП-МГ

Назначение средства измерений

Газоанализаторы портативные КИП-МГ (далее — газоанализаторы) предназначены для измерений объемной доли, массовой и довзрывной концентрации токсичных, горючих, углеводородных газов в атмосферном воздухе, в воздухе рабочей зоны, в закрытых (замкнутых) и жилых помещениях, в промышленных помещениях и открытых пространствах промышленных объектов, воздуховодах, в атмосфере горных выработок, в шахтах и горно-обогатительных комбинатах с подачей предупредительной сигнализации о превышении установленных пороговых значений.

Описание средства измерений

Принцип действия газоанализаторов определяется типом используемого сенсора:

- термокаталитические (ТК), основанные на беспламенном окислении горючих компонентов газовой смеси на поверхности катализатора;
- электрохимические (ЭХ), основанные на потенциостатической амперометрии, заключающейся в измерении тока при электрохимическом окислении вещества на рабочем электрохимической ячейки;
- инфракрасные (ИК), основанные на селективном поглощении молекулами определяемого компонента электромагнитного излучения и измерении интенсивности инфракрасного излучения после прохождения им среды, содержащей определяемый компонент;
- фотоионизационные (ФИД), основанные на измерении силы тока, вызванного ионизацией газов и паров, пропорциональной концентрации определяемого вещества.

Газоанализаторы представляют собой автоматические приборы непрерывного действия в переносном (портативном) исполнении.

Конструктивно имеют модульную конструкцию, состоящую из измерительной части (интеллектуального сенсора модуля) и интерфейсного модуля. Интеллектуальный сенсорный модуль — это газочувствительный сенсор с электронной платой, в которой происходит преобразование аналогового либо цифрового сигнала в электрический цифровой сигнал с сохранением в памяти градуировочных характеристик и значений термокомпенсации. Интерфейсный модуль преобразовывает полученные сигналы измеренной концентрации в требуемый сигнал для хранения, обработки и передачи данных.

Газоанализаторы изготавливаются в 4 модификациях — КИП-МГс, КИП-МГ1, КИП-МГ4, КИП-МГ5, которые отличаются конструктивным исполнением, перечнем определяемых компонентов, диапазонами измерений, способом отбора пробы и наличием возможности дооснащением внешними устройствами пробоотбора

Способ отбора пробы - диффузионный либо принудительный с помощью встроенного насоса.

Газоанализаторы КИП-МГ1, КИП-МГ4, КИП-МГ5 выполнены в корпусе из ударопрочного антистатичного обрезиненного пластика, с дисплеем, батареей и установленными внутри сенсорными модулями и электронной платой с интерфейсной частью.

На задней стенке корпуса расположены:

- шильд;
- самозачищающиеся контакты для заряда аккумулятора блока питания;
- крепление типа «крокодил».

Газоанализатор КИП-МГс выполнен в корпусе из металла либо пластика, без индикации показаний, с электрическим питанием от внешнего источника, и установленными внутри сенсорными модулями и электронной платой с интерфейсной частью.

Газоанализаторы обеспечивают выполнение следующих функций:

- непрерывное измерение концентрации определяемого компонента, цифровая индикация контролируемых компонентов, их диапазонов и пороговых значений с возможностью изменения единиц измерений;
- индикация и сигнализация (для газоанализаторов мод. КИП-МГ1, КИП-МГ4, КИП-МГ5) о превышении установленных пороговых значений содержания определяемых компонентов (звуковые, вибро- и световые прерывистые сигналы);
 - индикация текущей даты и времени;
 - индикация самодиагностики;
 - индикация температуры окружающей среды;
 - индикация и сигнализация неисправностей;
 - индикация неподвижности газоанализатора (датчик положения);
 - индикация работы встроенного насоса;
 - управление зарядом, индикация и сигнализация о разряде аккумулятора;
 - сигнализация о включенном состоянии;
- непрерывная автоматическая запись информации о концентрации определяемого компонента и параметрах работы газоанализатора в режиме реального времени в архивную память с привязкой к реальному времени.

Газоанализаторы сохраняют в памяти результаты измерений и обеспечивают вывод данных на персональный компьютер при помощи USB-порта, ИК-порта и с помощью беспроводных модулей передачи данных 3G/4G/LTE, LoRaWAN, LoRa, E-WIRE (опционально), Bluetooth (опционально); модуль определения местоположения (GPS, ГЛОНАСС (опционально)), обеспечивают выдачу токового сигнала от 4 до 20 мА и передают данные по интерфейсу RS-485 (с протоколом MODBUS) (опционально).

Заводские установки порогов срабатывания сигнализации могут быть перенастроены пользователем в процессе эксплуатации в режиме установок газоанализатора.

Газоанализаторы могут использоваться в качестве самостоятельного изделия или в составе газоаналитических систем.

Результаты измерений могут быть представлены в пересчете на единицы массовой концентрации (мг/м 3), в объемных долях (6 , млн $^{-1}$) и 6 нижнего концентрационного предела распространения пламени (6 НКПР).

Защита от несанкционированного доступа к настройкам газоанализаторов осуществляется посредством введения секретного кода (пароля).

Общий вид газоанализаторов приведен на рисунках 1-4.

Пломбирование газоанализаторов не предусмотрено.

Нанесение знака поверки на средство измерений не предусмотрено. Серийный номер в виде буквенно-цифрового обозначения наносится типографским методом на идентификационную табличку (рисунки 1.1-1.4), закрепленную на панели прибора.

Рисунок 1 — Общий вид газоанализаторов портативных КИП-МГ модификации КИП-МГ1

Рисунок 1.1 – Идентификационная табличка газоанализаторов портативных КИП-МГ модификации КИП-МГ1

Рисунок 2 — Общий вид газоанализаторов портативных КИП-МГ модификации КИП-МГ4

Рисунок 2.1 – Идентификационная табличка газоанализаторов портативных КИП-МГ модификации КИП-МГ4

Рисунок 3 — Общий вид газоанализаторов портативных КИП-МГ модификации КИП-МГ5

Рисунок 3.1 – Идентификационная табличка газоанализаторов портативных КИП-МГ модификации КИП-МГ5

Рисунок 4 – Общий вид газоанализаторов портативных КИП-МГ модификации КИП-МГс

Рисунок 4.1 – Идентификационная табличка газоанализаторов портативных КИП-МГ модификации КИП-МГс

Программное обеспечение

Газоанализаторы имеют встроенное метрологически значимое программное обеспечение (далее - Π O), разработанное для решения задач измерения содержания определяемого компонента в воздухе. Уровень защиты Π O «высокий» в соответствии с P 50.2.077-2014.

Основной функцией ПО является снятие сигналов с газоанализаторов и расчет на основании этих данных концентраций контролируемых компонентов воздуха. ПО обеспечивает контроль показателей, определяющих работоспособность всех подсистем газоанализатора. В случае обнаружения отклонения какого-либо параметра от заданной нормы будет выведено сообщение об отказе. Для газоанализаторов мод. КИП-МГ1, КИП-МГ4, КИП-МГ5 полученные данные выводятся на дисплей газоанализатора и в фоновом режиме записываются в кольцевой буфер. При нажатии на кнопки клавиатуры запускаются процедуры, выполняющие навигацию по пользовательскому меню. Для газоанализаторов мод. КИП-МГс полученные данные выводятся на экран персонального компьютера (ПК).

Встроенное ПО сохраняет в памяти информацию о датчике: измеряемое вещество, заводские и пользовательские настройки, результаты измерений, градуировочные характеристики и настройки термокомпенсации.

Защита ПО от преднамеренных изменений обеспечивается путем крепления крышки газоанализатора к корпусу спецвинтами и отсутствием возможности изменения ПО и настроек газоанализатора без введения пароля.

Внешнее ПО предназначено для отображения результатов измерений и имеет функцию выполнения настройки, градуировки и настройки термокомпенсации.

Влияние ΠO газоанализаторов учтено при нормировании метрологических характеристик.

Таблица 1 – Идентификационные данные ПО

Haranay haranay ayay ya yayay ya (zayayyayy)	Значение			
Идентификационные данные (признаки)	Встроенное ПО	Пользовательское ПО		
Идентификационное наименование ПО	КИП	KipSens21xx		
Номер версии (идентификационный номер) ПО	V2.89	V3.0		

Метрологические и технические характеристики

Метрологические и технические характеристики газоанализаторов приведены в таблицах 2-5.

Таблица 2 — Метрологические характеристики газоанализаторов с установленным инфракрасным (оптическим) сенсором (ИК)

инфракрасным	и (оптическим) сенсо	ром (ИК)		
		Диапазон измерений		
		объемной доли, % (до-	Пределы допус-	Время уста-
Определяе-	Модификация сен-	взрывоопасной концен-	каемой основной	новления
мый компо-	-	трации, % НКПР), мас-		выходного
нент	copa	совой концентрации,	абсолютной по-	сигнала Т _{0,90} ,
		$M\Gamma/M^3$, определяемого	грешности	с, не более
		компонента		
Ацетилен	HIC/COHO/0 100	от 0 до 2,30 %	±0,12 %	10
C_2H_2	ИК/С2Н2/0-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
Акрилонитрил	HIC/COHON /0.50	от 0 до 1,4 %	± 0,14 %	10
C_3H_3N	ИК/C3H3N /0-50	(от 0 до 50 % НКПР)	(±5 % НКПР)	10
Ацетон (2-		om 0 no 2.5 %	+0.125.0/	
пропанон)	ИК/С3Н6О /0-100	от 0 до 2,5 %	±0,125 %	10
C ₃ H ₆ O		(от 0 до 100 % НКПР)	(±5 % НКПР)	
Г С И	HICCHICA 100	от 0 до 1,20 %	±0,06 %	10
Бензол С ₆ Н ₆	ИК/С6Н6/0-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
Бутилен-1	ИК/С4Н8/0-100	от 0 до 1,6 %	±0,08 %	10
C_4H_8	ИК/C4П8/U-1UU	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
Бутилацетат	ИК/С6Н12О2/0-50	от 0 до 0,6 %	±0,036 %	10
$C_6H_{12}O_2$	ИК/СОП12О2/0-30	(от 0 до 50 % НКПР)	(±3 % НКПР)	10
Francis C II	MC/C4H10/0.50	от 0 до 0,7 %	±0,07 %	10
Бутан С ₄ Н ₁₀	ИК/С4Н10/0-50	(от 0 до 50 % НКПР)	(±5 % НКПР)	10
Пары бен-	ИК/БТ/0-50	om 0, vo 50.0/ III/IID	±5 % НКПР	10
зина ¹⁾	/IN/D1/U-3U	от 0 до 50 % НКПР	±3 % ΠΚΠΡ	10
Винилхлорид	ИК/C2H3CL/0-50	от 0 до 1,8 %	±0,18 %	10
C_2H_3C1	/IK/C2H3CL/0-30	(от 0 до 50 % НКПР)	(±5 % НКПР)	10
Formary C.II.	ИК С.П., 100	от 0 до 1,0 %	±0,05 %	10
Гексан С ₆ Н ₁₄	ИКсп-С6Н14-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
Formery C-II.	ИК _{сп} -С ₇ Н ₁₆ -100	от 0 до 0,85 %	± 0,042 %	10
Гептан С ₇ Н ₁₆	ИКсп-С7П16-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
	ИК/СО2/0-5000	от 0 до 0,5 %	± 0,05 %	10
Диоксид угле-	ИК/СО2/0-5	от 0 до 5 %	±0,1 %	10
рода СО2	ИК/СО2/0-20	от 0 до 20 %	±(0,1·X) %	10
	ИК/СО2/0-100	от 0 до 100 %	±(0,1·X) %	10
Диметиловый	ИК/ С2Н6О/0-50	от 0 до 1,35 %	±0,14 %	10
эфир С2Н6О	YIK/ CZHUO/U-3U	(от 0 до 50% НКПР)	(±5 % НКПР)	10
Диэтиловый	ИК/ С2Н10О/0-50	от 0 до 0,85 %	±0,085 %	10
эфир С ₄ Н ₁₀ О	YIK/ C21110O/0-30	(от 0 до 50% НКПР)	(±5 % НКПР)	10
Пупусатич		om 0 == 1 10/		
Диметилсуль-	ИК/ C2H6S /0-100	от 0 до 1,1%	±0,11 %	10
фид C ₂ H ₆ S		(от 0 до 50 % НКПР)	(±5 % НКПР)	
Иробутура				
Изобутилен (2-метилпро-	ИК/ С4Н8/0-100	от 0 до 1,6 %	±0,08 %	10
(2-метилпро- пен) i-C ₄ H ₈	YIN/ C4170/U-1UU	(от 0 до 100 % НКПР)	(±5 % НКПР)	10
1101) 1-04118				

продолжение т	аолицы 2	T	,	
Определяе- мый компо- нент	Модификация сен- сора	Диапазон измерений объемной доли, % (доварывоопасной концентрации, % НКПР), массовой концентрации, мг/м³, определяемого компонента	Пределы допускаемой основной абсолютной погрешности	Время установления выходного сигнала $T_{0,90}$, с, не более
	ИК/ СН4/0-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % HKΠP)	10
Метан СН4	ИК/ СН4/50М	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % НКПР)	10
	ИК/ СН4/0-100 %	от 0 до 100%	± 5 %	10
Метантиол (метилмер- каптан) СН ₃ SH	ИК/ CH3SH /0-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	±0,21 % (±5 % НКПР)	10
Метанол СН ₃ ОН	ИК/ СН3ОН/0-50	от 0 до 3 % (от 0 до 50 % НКПР)	±0,3 % (±5 % HKΠP)	10
Метилбензол (толуол) С ₇ Н ₈	ИК/ С7Н8/0-100	от 0 до 1 % (от 0 до 100 % НКПР)	±0,05 % (±5 % HKΠP)	10
Октен С ₈ Н ₁₆	ИК/ С8Н16/0-50	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	±0,027 % (± 3 % ΗΚΠΡ)	10
Оксид эти- лена С ₂ Н ₄ О	ИК/ С2Н4О/0-100	от 0 до 2,6 % (от 0 до 100 % НКПР)	±0,13 % (±5 % НКПР)	10
Оксид пропилена C ₂ H ₆ O	ИК/ С2Н6О/0-50	от 0 до 0,95 % (от 0 до 50 % НКПР)	±0,95 % (±5 % ΗΚΠΡ)	10
Оксид азота (I) N ₂ O	ИК/ N2O/0-1	от 0 до 1%	±0,05 %	10
Пары дизель- ного топ- лива ²⁾	ИК/ДТ/0-50	от 0 до 50 % НКПР	±5 % НКПР	10
Пары керо- сина ³⁾	ИК/КТ/0-50	от 0 до 50 % НКПР	±5 % НКПР	10
Пентан С ₅ Н ₁₂	ИК/ С5Н12/0-100	от 0 до 1,1 % (от 0 до 100 % НКПР)	±0,055 % (±5 % НКПР)	10
Пропилен (пропен) С ₃ Н ₆	ИК/ С3Н6/0-100	от 0 до 2 % (от 0 до 100 % НКПР)	±0,1 % (±5 % НКПР)	10
	ИК/ СЗН8/0-100	от 0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % НКПР)	10
Пропан С ₃ Н ₈	ИК/ С3Н8/50М	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,051 % (±3 % НКПР)	10
	ИК/ СН4/0-100 %	от 0 до 100 %	±(0,1+0,049·X) %	10
Пары Уайт- спирита ⁴⁾	ИК/УС/0-50	от 0 до 50 % НКПР	±5 % НКПР	10
Пары $\sum CxHy$ (по метану) ⁵⁾	ИК/ CxHy /0-100 (CH4)	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)	10

Определяе- мый компо- нент	Модификация сен- сора	Диапазон измерений объемной доли, % (довзрывоопасной концентрации, % НКПР), массовой концентрации, мг/м³, определяемого компонента		Пределы допус- каемой основной абсолютной по- грешности	Время установления выходного сигнала $T_{0,90}$, с, не более
Пары ∑СхНу (по метану) ⁵⁾	ИК/ CxHy /0-7000 (CH4)	от 0 до 7000 мг/м ³	от 0 до 500 мг/м ³ включ.	$\pm 30 \text{ M}\text{F/M}^3$	10
(no merany)	(811.)	7000 1117 111	св. 500 до 7000 мг/м ³	$\pm (0,154*X-15,6)$ $M\Gamma/M^3$	10
	ИК/ CxHy /0-100 (C3H8)		o 1,7 % 0 % НКПР)	±0,085 % (± 5 % ΗΚΠΡ)	10
Пары $\sum CxHy$ (по пропану) ⁵⁾	ИК/ СхНу /0-7000	от 0 до	от 0 до 500 мг/м ³ включ.	$\pm 30 \text{ M}\text{F/M}^3$	10
	(C3H8)	7000 мг/м ³	св. 500 до 7000 мг/м ³	$\pm (0,154*X-15,6)$ $M\Gamma/M^3$	10
Горючие газы ⁶⁾	ИК/LEL/0-100	от 0 до 10	00 % НКПР	±5 % НКПР	10
Циклопентан С ₅ H ₁₀	ИК/ С5Н10/0-100		o 1,4 % 0 % НКПР)	± 0,07 % (±5 % HKΠP)	10
Циклогексан С ₆ H ₁₂	ИК/ С6Н12/0-100		o 1,0 % 0 % НКПР)	± 0,05 % (±5 % HKΠP)	10
Циклопропан C_3H_6	ИК/ С3Н6/0-100		o 2,4 % 0 % НКПР)	± 0,12 % (±5 % HKΠP)	10
Хлорбензол С ₆ Н ₅ С1	ИК/ С6Н5С1/0-50		o 0,5 % ,4 % НКПР)	± 0,039 % (± 3 % ΗΚΠΡ)	10
Этан С2Н6	ИК/ С2Н6/0-100		o 2,4 % 0 % НКПР)	± 0,12 % (±5 % HKΠP)	10
Этанол С ₂ Н ₅ ОН	ИК/ С2Н5ОН/0-50		o 1,5 % ,3 % НКПР)	± 0,16 % (±5 % HKΠP)	10
Этилен С ₂ Н ₄	ИК/ С2Н4/0-100	от 0 до 2,3 % (от 0 до 100 % НКПР)		± 0,12 % (±5 % HKΠP)	10
Этилбензол С ₈ H ₁₀	ИК/ С5Н10/0-50	от 0 до 0,3 % (от 0 до 37,5 % НКПР)		± 0,024 % (±3 % HKΠP)	10
Этилацетат С ₄ H ₈ O ₂	ИК/ С4Н8О2/0-50	от 0 до 1,0 % (от 0 до 50 % НКПР)		± 0,1 % (± 5 % HKΠP)	10
Этантиол (этилмеркап- тан) С ₂ H ₅ SH	ИК/ C2H5SH /0-50		о 1,4 %) % НКПР)	±0,14 % (±5 % НКПР)	10

Окончание таблицы 2

Примечания:

- 1) При контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.
- 2) Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен производителем. Диапазон показаний не может быть меньше диапазона измерений.
 - 3) Значения НКПР для горючих газов и паров в соответствии с ГОСТ 31610.20-1-2020.
- 4) Пары нефтепродуктов являются смесью углеводородов, поэтому газоанализатор градуируется по конкретной марке топлива, с указанием марки в паспорте на прибор:
 - 1) Пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002.
 - ²⁾ Пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ Р 52368-2005.
 - ³⁾ Пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86.
 - ⁴⁾ Уайт-спирит по ГОСТ Р 52368-2005.
- ⁵⁾ Сумма углеводородов (\sum CxHy) суммарное содержание предельных углеводородов: этан (C_2H_6), пропан (C_3H_8), бутан (C_4H_{10}), пентан (C_5H_{12}), гексан (C_6H_{14}), гептан (C_7H_{16}), октан (C_8H_{18}), нонан (C_9H_{20}), декан ($C_{10}H_{22}$).
- $^{6)}$ К горючим газам относится смесь углеводородов в воздухе. Градуировку проводят в зависимости от преобладающего компонента. Конкретный определяемый компонент указывается в паспорте на прибор (из списка: метан (CH₄), этан (C₂H₆), пропан (C₃H₈), бутан (C₄H₁₀), пентан (C₅H₁₂), гексан (C₆H₁₄), водород и углеводороды (H₂), ацетилен (C₂H₂), этилен (C₂H₄), пропилен (C₃H₆), бензол (C₆H₆), оксид этилена (C₂H₄O));

X – содержание определяемого компонента в поверочной газовой смеси, мг/м³, %.

Таблица 3 — Метрологические характеристики газоанализаторов с установленным термокаталитическим сенсором (ТК)

		Диапазон измерений		Время	
		объемной доли, %	Пределы до-	установ-	
Определяемый	Модификация сен-	(довзрывоопасной кон-	пускаемой ос-	ления вы-	
компонент	*	центраций, % НКПР),	новной абсо-	ходного	
KOMHOHCHI	copa	массовой концентрации	лютной по-	сигнала	
		(мг/м ³) определяемого	грешности	Т _{0,9} , с, не	
		компонента		более	
Ацетилен С2Н2	TK/C2H2/0-100	от 0 до 2,30 %	±0,12 %	15	
Ацетилен С2112	1 K/C2112/0-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	13	
Акрилонитрил	TK/ C3H3N /0-100	от 0 до 2,8 %	± 0,14 %	15	
C_3H_3N	11X/ C31131N /0-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	13	
Ацетон (2-пропа-	TK/ C3H6O /0-100	от 0 до 2,5 %	±0,13 %	15	
нон) С ₃ Н ₆ О	1K/ C3110O /0-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	13	
Angrey MII	TK/ NH3/100	от 0 до 15,0 %	±0,75 %	15	
Аммиак NH ₃	1 K/ NH3/100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	13	
Farrage C II	TIC/C/(IIC/0 100	от 0 до 1,20 %	±0,06 %	1.5	
Бензол С ₆ Н ₆	TK/C6H6/0-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	15	
Francisco 1 C.II	E 1 C II FIGGALIO/0 100		±0,08 %	15	
Бутилен-1 С ₄ Н ₈	TK/C4H8/0-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	15	
Бутилацетат	TK/ C6H12O2/0-100	от 0 до 0,7 %	±0,042 %	15	
$C_6H_{12}O_2$	1 N/ C0H12O2/0-100	(от 0 до 50 % НКПР)	(±3 % НКПР)	15	

Продолжение так	лицы 3			
Определяемый компонент	Модификация сен- сора	Диапазон измерений объемной доли, % (довзрывоопасной концентраций, % НКПР), массовой концентрации (мг/м³) определяемого компонента	Пределы до- пускаемой ос- новной абсо- лютной по- грешности	Время установ-ления вы-ходного сигнала $T_{0,9}$, с, не более
Бутан С4Н10	TK/C4H10/0-100	от 0 до 0,7 % (от 0 до 50 % НКПР)	±0,07 % (±5 % HKΠP)	15
Пары бензина ¹⁾	ТК/БТ/0-100	от 0 до 50 % НКПР	±5 % НКПР	15
Винилхлорид С ₂ H ₃ Cl	TK/ C2H3CL/0-100	от 0 до 1,8% (от 0 до 50 % НКПР)	±0,18 % (±5 % ΗΚΠΡ)	15
Водород Н2	TK/ H2/0-100	от 0 до 2 % (от 0 до 50 % НКПР)	±0,2 % (±5 % ΗΚΠΡ)	15
Гексан С ₆ Н ₁₄	TK/ C6H14 /0-100	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % ΗΚΠΡ)	15
Гептан С ₇ Н ₁₆	TK/ C7H16 /0-100	от 0 до 0,85 % (от 0 до 100 % НКПР)	±0,042 % (±5 % ΗΚΠΡ)	15
Гексен С ₆ Н ₁₂	TK/ C6H12 /0-100	от 0 до 6 % (от 0 до 50 % НКПР)	±0,6 % (±5 % ΗΚΠΡ)	15
Диметиловый эфир C_2H_6O	TK/ C2H6O/0-100	от 0 до 1,35 % (от 0 до 50 % НКПР)	±0,14 % (±5 % ΗΚΠΡ)	15
Диэтиловый эфир $C_2H_{10}O$	TK/ C2H10O/0-100	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % ΗΚΠΡ)	15
Диметилсульфид C_2H_6S	TK/ C2H6S /0-100	от 0 до 1,1% (от 0 до 50 % НКПР)	±0,11 % (±5 % HKΠP)	15
Изобутилен (2-метилпропен) i-C ₄ H ₈	TK/ C4H8/0-100	от 0 до 1,6 % (от 0 до 100 % НКПР)	±0,08 % (±5 % ΗΚΠΡ)	15
Изобутан (2-метилпропан) i- C ₄ H ₁₀	TK/ C4H10/0-100	от 0 до 1,3 % (от 0 до 100 % НКПР)	±0,065 % (±5 % HKΠP)	15
	TK/ CH4/0-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % HKΠP)	15
Метан СН4	TK/ CH4/100M	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % HKΠP)	15
	ТКсп-СН4-14 600	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % НКПР)	15
Метантиол (метилмеркаптан) СН ₃ SH	TK/ CH3SH /0-100	от 0 до 2,05 % (от 0 до 50 % НКПР)	±0,21 % (±5 % ΗΚΠΡ)	15
Метанол СН ₃ ОН	TK/ CH3OH/0-100	от 0 до 3 % (от 0 до 50 % НКПР)	±0,3 % (±5 % ΗΚΠΡ)	15
Метилбензол (толуол) C_7H_8	TK/C7H8/0-100	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % HKΠP)	15
Октен С ₈ Н ₁₆	TK/ C8H16/0-100	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	±0,027 % (± 3 % HKΠP)	15

				1	
		-	Прачания	Время	
			-	установ-	
Модификация сен-	` -			ления вы-	
copa				ходного сигнала	
				Т _{0,9} , с, не	
		_	Трешности	более	
			+0.26 %		
TK/ C2H4O/0-100			*	15	
	_				
TK/ C2H6O/0-100			*	15	
ТК/ДТ/0-100			±5 % НКПР	15	
TK/KT/0-100	от 0 до 50 °	% НКПР	±5 % НКПР	15	
TK/ C5H12/0-100			*	15	
TELL COLLCIO 100			±0,1 %	1.7	
TK/ C3H6/0-100			(±5 % НКПР)	15	
TIC/ C2110/0 100			±0,051 %	1.5	
1K/ C3H8/0-100			(±3 % НКПР)	15	
TK/ C3H8/100M	от 0 до 0,85 % (от 0 до 15550 мг/м ³)		±0,051 %		
			$(\pm (0,154*X-$	15	
			$15,6) \text{ мг/м}^3)$		
ТК/УС/0-100	от 0 до 50 9	% НКПР	±5 % НКПР	15	
TK/AT/0-100%	от 0 до 50 °	% НКПР	±5 % НКПР	15	
ТК/НФ/0-100%	от 0 до 50	% НКПР	±5 % НКПР	15	
TK/ CxHv /0-100	от 0 до 4,4	%	±0.22 %	1.5	
•			,	15	
	от 0 до	от 0 до 300 мг/м ³ включ.	$\pm 30 \text{ M}\Gamma/\text{M}^3$	15	
(CH4)	_	св. 300 до	± (0,154*X-	1.5	
·	M17M	3000 мг/м^3	15,6) мг/м ³	15	
TK/ CxHy /0-100	от 0 до 1,7	%	±0,085 %	15	
(C3H8)	(от 0 до 10	0 % НКПР)	(±5 % HKΠP)	13	
	от О по	от 0 до 300	$+30 \text{ Mg/M}^3$	15	
TK/ CxHy /0-7000		$M\Gamma/M^3$ включ.		13	
(C3H8)	_	св. 300 до	$\pm (0,154*X)$	15	
	1711 / 171	7000 мг/м^3	MΓ/M ³	13	
TK/LEL/0-100	от 0 до 100) % НКПР	±5 % НКПР	10	
TV/C5U10/0 100	от 0 до 0,7	%	± 0,07 %	IP) 15	
тм Сэпти/u-100	(от 0 до 50	% НКПР)	(±5 % HKΠP)		
TK/ C6H12/0.100			± 0,05 %	15	
110/ C01112/0-100	(от 0 до 10	0 % НКПР)	(±5 % НКПР)		
	тк/ C2H4O/0-100 тк/ C2H6O/0-100 тк/Дт/0-100 тк/Дт/0-100 тк/Кт/0-100 тк/ С3H6/0-100 тк/ С3H8/0-100 тк/ С3H8/100М тк/ус/0-100 тк/нф/0-100% тк/ Схну /0-100 (СН4) тк/ Схну /0-100 (СЗН8) тк/ Схну /0-7000 (СЗН8)	Модификация сенсора (довзрыво центраци массовой и (мг/м³) от коми (мг/м³) от до 50 ТК/ С2Н4О/0-100 от 0 до 2,6 (от 0 до 50 ТК/ С2Н6О/0-100 от 0 до 50 ТК/ДТ/0-100 от 0 до 50 ТК/КТ/0-100 от 0 до 50 ТК/ С5Н12/0-100 от 0 до 50 ТК/ С3Н6/0-100 от 0 до 19% (от 0 до 50 ТК/ С3Н8/0-100 от 0 до 1,7 (от 0 до 10 ТК/УС/0-100 от 0 до 0,83 (от 0 до 15 ТК/УС/0-100 от 0 до 50 ТК/НФ/0-100% от 0 до 50 ТК/ Схну /0-100 от 0 до 50 ТК/ Схну /0-3000 от 0 до 50 ТК/ Схну /0-3000 от 0 до 10 ТК/ Схну /0-3000 от 0 до 10 ТК/ Схну /0-7000 от 0 до 10 ТК/ Сбн 12/0-100 от 0 до 0,7 (от 0 до 50 ТК/ Сбн 12/0-100 от 0 до 1,0 От 0 до 1,0 от 0 до 1,0	тк/ С2H4O/0-100 от 0 до 50 % HKПР) тк/С2H6O/0-100 от 0 до 50 % HKПР) тк/ДТ/0-100 от 0 до 50 % HКПР тк/КТ/0-100 от 0 до 50 % HКПР тк/С5H12/0-100 от 0 до 50 % HКПР тк/С3H6/0-100 от 0 до 50 % HКПР тк/С3H6/0-100 от 0 до 50 % HКПР тк/С3H8/0-100 от 0 до 50 % HКПР тк/С3H8/100М от 0 до 100 % HКПР тк/С3H8/100М от 0 до 50 % HКПР тк/Схну/0-100 от 0 до 4,4 % (от 0 до 100 % HКПР) тк/Схну/0-3000 от 0 до 4,4 % (от 0 до 100 % HКПР) тк/Схну/0-3000 от 0 до 100 % HКПР) тк/Схну/0-3000 от 0 до 100 % HКПР) тк/Схну/0-100 от 0 до 100 % HКПР) тк/Схну/0-7000 от 0 до 100 % HКПР) тк/Схну/0-7000 от 0 до 100 % HКПР) тк/Схну/0-7000 от 0 до 100 % НКПР тк/Схну/0-7000 от 0 до 100 % НКПР тк/С5H10/0-100 от 0 до 100 % НКПР	Модификация сенсора (довзрывоопасной концентрации (мг/м³) определяемого компонента (довзрывоопасной концентрации (мг/м³) оподо 0,55 % (доворя м ККПР) (доворя м ККПР)	

Окончание таблицы 3

		Диапазон измерений		Время	
		объемной доли, %	Пределы до-	установ-	
Определяемый	Модификация	(довзрывоопасной кон-	пускаемой ос-	ления вы-	
компонент	сенсора	центраций, % НКПР),	новной абсо-	ходного	
KOMHOHCHI	ссноора	массовой концентрации	лютной по-	сигнала	
		(мг/м ³) определяемого	грешности	Т _{0,9} , с, не	
		компонента		более	
Циклопропан С ₃ Н ₆	TK/ C3H6/0-100	от 0 до 2,4 %	± 0,12 %	15	
циклопропан С3116	1K/ C3110/0-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)	13	
VHOREOWER C. H.C.	TK/ C6H5Cl /0-	от 0 до 0,65 %	±0,039 %	15	
Хлорбензол C ₆ H ₅ Cl	100	(от 0 до 50 % НКПР)	(±3 % НКПР)	13	
Этан С2Н6	TK/ C2H6/0-100	от 0 до 2,4%	± 0,12 %	15	
Этан С2П6	1K/ C2H0/0-100	(от 0 до 100 % НКПР)	(±5 % НКПР)	13	
Этанол С2Н5ОН	TK/ C2H5OH/0-	от 0 до 1,55%	± 0,16 %	15	
Этанол С2П5ОП	100	(от 0 до 50 % НКПР)	(±5 % НКПР)	13	
Omygray C.H.	TK/ C2H4/0-100	от 0 до 2,3 %	± 0,12 %	15	
Этилен С2Н4	1 N/ C2H4/U-1UU	(от 0 до 100 % НКПР)	(±5 % НКПР)	13	
Этинбауран С. Ц.	TK/ C5H10/0-100	от 0 до 0,3 %	± 0,024 %	15	
Этилбензол С ₈ Н ₁₀	1K/ C3H10/0-100	(от 0 до 37,5 % НКПР)	(±3 % НКПР)	13	
	TK/ C4H8O2/0-	от 0 до 1,0 %	± 0,1 %	1.5	
Этилацетат С ₄ H ₈ O ₂	100	(от 0 до 50 % НКПР)	(± 5 % HKΠP)	15	
Этантиол (этилмер-	TK/ C2H5SH /0-	от 0 до 1,4 %	±0,14 %	15	
каптан) С2Н5SН	100	(от 0 до 50 % НКПР)	(±5 % HKΠP)	13	

Примечания:

- 1) При контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.
- 2) Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен производителем. Диапазон показаний не может быть меньше диапазона измерений.
 - 3) Значения НКПР для горючих газов и паров в соответствии с ГОСТ 31610.20-1-2020.
- 4) Пары нефтепродуктов являются смесью углеводородов, поэтому газоанализатор градуируется по конкретной марке топлива, с указанием марки в паспорте на прибор:
 - 1) Пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002.
 - ²⁾ Пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ Р 52368-2005.
 - ³⁾ Пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86.
 - ⁴⁾ Пары уайт-спирит по ГОСТ Р 52368-2005.
 - 5) Пары авиационного топлива по ГОСТ Р 52050-2006.
- $^{6)}$ Сумма углеводородов (∑СхНу) суммарное содержание предельных углеводородов: этан (6 СуН₆), пропан (6 С₃Н₈), бутан (6 С₄Н₁₀), пентан (6 С₅Н₁₂), гексан (6 С₆Н₁₄), гептан (6 С₇Н₁₆), октан (6 С₈Н₁₈), нонан (6 С₉Н₂₀), декан (6 С₁₀Н₂₂).
- $^{7)}$ К горючим газам относится смесь углеводородов в воздухе. Градуировку проводят в зависимости от преобладающего компонента. Конкретный определяемый компонент указывается в паспорте на прибор (из списка: метан (CH₄), этан (C₂H₆), пропан (C₃H₈), бутан (C₄H₁₀), пентан (C₅H₁₂), гексан (C₆H₁₄), водород и углеводороды (H₂), ацетилен (C₂H₂), этилен (C₂H₄), пропилен (C₃H₆), бензол (C₆H₆), оксид этилена (C₂H₄O)).
 - X содержание определяемого компонента в поверочной газовой смеси, мг/м 3 , %.

Таблица 4 — Метрологические характеристики газоанализаторов с установленным электрохимическим сенсором (ЭX)

МИЧССКИ	м сенсором (ЭХ	<u>.)</u>		T		1
				Пределы допускаемой основной погрешности, %		Время установ-
Определя- емый ком- понент Модифика- ция сенсора		Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		приведенная к ВПИ (верхнему пределу диа-пазона измерений)	относи- тельная	ления выход- ного сиг- нала Т _{0,9} , с, не бо- лее
	DATA HAZ (0. 10	от 0 до 10	от 0 до 3 включ. (от 0 до 1,9 включ.)	±20	_	
	ЭX/NH3/0-10	(от 0 до 6,22)	св. 3 до 10 (св. 1,9 до 7,22)	_	±20	
	ЭX/NH3/0-50	от 0 до 50 (от 0 до	от 0 до 10 включ. (от 0 до 7,22 включ.)	±20	_	
		31,1)	св. 10 до 50 (св. 7,22 до 31,1)	_	±20	
	ЭХ/NH3/0- 100	от 0 до 100 (от 0 до 62,2)	от 0 до 10 включ. (от 0 до 7,22 включ.)	±20	_	
			св. 10 до 100 (св. 7,22 до 72,2)	_	±20	
Аммиак	ЭX/NH3/0-	от 0 до 200 (от 0 до	от 0 до 10 включ. (от 0 до 7,22 включ.)	±20	_	1.5
NH ₃	200	124,4)	св. 10 до 200 (св. 7,22 до 124,4)	_	±20	15
	ЭX/NH3/0-	от 0 до 500 (от 0 до	от 0 до 50 включ. (от 0 до 31,1 включ.)	±20	_	
	500	311,1)	св. 50 до 500 (св. 31,1 до 311,1)	_	±20	
	ЭX/NH3/0-	от 0 до 1000 (от 0	от 0 до 100 включ. (от 0 до 72,2 включ.)	±20	_	
	1000	до 622)	св. 100 до 1000 (св. 72,2 до 722)	_	±20	
	ЭX/NH3/0-	от 0 до 2000 (от 0	от 0 до 100 включ. (от 0 до 72,2 включ.)	±20	_	
	2000	2000 (01 0 до 1244,5) с.		_	±20	

Продолжение	таолицы 4					T						
		_		Пределы доп основной погр % приведенная		Время установ- ления						
Определяе- мый компо- нент сора		объем	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		относи- тельная	выход- ного сиг- нала Т _{0,9} , с, не бо- лее						
Арсин AsH ₃	ЭX/AsH3/0 -1	от 0 до 1 (от 0 до 3,24)	от 0 до 0,1 включ. (от 0 до 0,32 включ.)	±20	_	20						
		3,24)	св. 0,1 до 1 (св.0,32 до 3,24)	_	±20							
Азотная кислота HNO ₃ (в пересчете по NO ₂)	ЭX/HNO3- 40		0,4 до 15,3 от 1 до 40)	_	±20	20						
	ЭX/Br2/0-1	от 0 до 2 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,66 включ.)	±20	l							
		3,3)	св. 0,2 до 2 (св. 0,66 до 6,6)	_	±20							
	ЭХ/Br2/0- 10		от 0 до 10 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,66 включ.)	±20	_						
	10	33,1)	св. 0,2 до 10 (св. 0,66 до 33,1)	_	±20							
Бром Br ₂	ЭХ/Br2/0- 20	от 0 до 20 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,66 включ.)	±20	-	20						
	20	66,2)	св.0,2 до 20 (св. 0,66 до 66,2)	_	±20							
	ЭX/Br2/0-						ЭХ/Br2/0- 50	от 0 до 50 (от 0 до	от 0 до 10 включ. (от 0 до 33,1 включ.)	±20	_	
		165,5)	св. 10 до 50 (св. 33,1 до 165,5)	_	±20							
ЭX/Br2 100	ЭX/Br2/0-	от 0 до 100 (от 0 до	от 0 до 10 включ. (от 0 до 33,1 включ.)	±20	_							
	100	00 (61 6 46 331,4)	св. 10 до 100 (св. 33,1 до 331,4)	_	±20							
Водород Н2	ЭX/H2/0-	от 0 до 20 (от 0 до	от 0 до 1 включ. (от 0 до 0,083 включ.)	±20	_	15						
	20	1,67)	св. 1 до 20 (св. 0,083 до 1,67)	_	±20							

Продолжение	таолицы 4	T		1		
				Пределы допускаемой основной погрешности, %		Время установ-
Определяе- мый компо- нент сора		объем	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		относи- тельная	ления выход- ного сиг- нала Т _{0,9} , с, не бо- лее
	ЭX/H2/0-	от 0 до 100 (от 0 до	от 0 до 10 включ. (от 0 до 0,83 включ.)	±20	_	
	100	8,3)	св. 10 до 100 (св. 0,83 до 8,3)	_	±20	
	ЭХ/Н2/0-	от 0 до 1000	от 0 до 100 включ. (от 0 до 8,3 включ.)	±20	_	
	1000	(от 0 до 83,6)	св.100 до 1000 (св. 8,3 до 83,6)	_	±20	
	ЭХ/Н2/0-	от 0 до 2000	от 0 до 100 включ. (от 0 до 8,3 включ.)	±20	_	
Водород Н2	2000	(от 0 до 167,2)	св.100 до 2000 (св. 8,3 до 167,2)	_	±20	15
	ЭХ/H2/0- 5000	от 0 до 5000 (от 0 до 418,13)	от 0 до 200 включ. (от 0 до 16,7 включ.)	±20	_	
			св. 200 до 5000 (св. 16,7 до 418,13)	_	±20	
	ЭX/H2/0- 40000		от 0 до 1000 включ. (от 0 до 83,6 включ.)	±20	_	
			св. 1000 до 40000 (св. 83,6 до 3345,0)	_	±20	
	ЭX/N ₂ H ₄ /0	от 0 до 1 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,26 включ.)	±20	_	30
	-1	1,33)	св. 0,2 до 1 (св. 0,26 до 1,33)	_	±20	
Гидразин	ЭX/N ₂ H ₄ /0 -10	от 0 до 10 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,26 включ.)	±20	_	30
N ₂ H ₄	-10	13,32)	св. 0,2 до 10 (св. 0,26 до 13,32)	_	±20	
	ЭX/N ₂ H ₄ /0	от 0 до 100	от 0 до 10 включ. (от 0 до 13,32 включ.)	±20	_	30
	-100		св. 10 до 100 (св. 13,32 до 133,23)	_	±20	30

Продолжение	Тиолицы			Пределы доп основной погр %	•	Время установ-
Определяе- мый компо- нент	_		ной доли, млн ⁻¹	приведенная к ВПИ (верхнему пределу диа-пазона измерений)	относи- тельная	ления выход- ного сиг- нала Т _{0,9} , с, не бо- лее
	ЭX/NO2/0-	от 0 до 1 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	
	1	1,91)	св. 0,2 до 1 (св. 0,38 до 1,91)	-	±20	
	ЭX/NO2/0- 5	от 0 до 5 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	
	3	9,56)	св. 0,2 до 5 (св. 0,38 до 9,56)	_	±20	
	ЭX/NO2/0- 10	от 0 до 10 (от 0 до 19,3)	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	
			св. 0,2 до 10 (св. 0,38 до 19,3)	_	±20	
	ЭX/NO2/0- 20	от 0 до 20 (от 0 до 38,25)	от 0 до 1 включ. (от 0 до 1,91 включ.)	±20	_	
Диоксид азота NO ₂			св. 1 до 20 (св. 1,91 до 38,25)	_	±20	15
	ЭX/NO2/0-	2/0- от 0 до 100 (от 0 до	от 0 до 5 включ. (от 0 до 9,56 включ.)	±20	_	
	100	191,27)	св. 5 до 100 (св. 9,56 до 191,27)	_	±20	
	ЭX/NO2/0- 200	от 0 до 200 (от 0 до	от 0 до 5 включ. (от 0 до 9,56 включ.)	±20	_	
		382,54)	св. 5 до 200 (св. 9,56 до 382,54)	_	±20	
	ЭX/NO2/0-	от 0 до 500 (от 0 до	от 0 до 20 включ. (от 0 до 38,25 включ.)	±20	-	
	1 200	(от 0 до 956,34) св. 20 до 500 (св. 38,25 до 956,34)		_	±20	

Продолжени	е таблицы 4	T		T		1
		_		Пределы допускаемой основной погрешно- сти, %		Время установ- ления
Определяе- мый ком- понент сора		Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		приведенная к ВПИ (верхнему пределу диа-пазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
Диоксид азота NO ₂	ЭX/NO2/0- 1000	от 0 до 1000 (от 0 до	от 0 до 20 включ. (от 0 до 38,25 включ.)	±20	_	
	1000	1912,6)	св. 20 до 1000 (св. 38,25 до 1912,6)	_	±20	
	ЭX/NO2/0-	от 0 до 2000	от 0 до 100 включ. (от 0 до 191,27 включ.)	±20	_	15
	2000	(от 0 до 3825,3)	св. 100 до 2000 (св. 191,27 до 3825,3)	-	±20	
	ЭX/NOx/0- 1	от 0 до 1 (от 0 до 1,91)	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	
			св. 0,2 до 1 (св. 0,38 до 1,91)	_	±20	
	ЭX/NOx/0- 5	от 0 до 5 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	
	3	9,56)	св. 0,2 до 5 (св. 0,38 до 9,56)	_	±20	
Оксиды азота NO _x (в	ЭX/NOx/0-	/0- от 0 до 10 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,38 включ.)	±20	_	15
пересчете по NO ₂)	10	19,3)	св. 0,2 до 10 (св. 0,38 до 19,3)	_	±20	
	ЭX/NOx/0-	от 0 до 20 (от 0 до	от 0 до 1 включ. (от 0 до 1,91 включ.)	±20	_	
	20	38,25)	св. 1 до 20 (св. 1,91 до 38,25)	_	±20	1
	ЭX/NOx/0- 100	от 0 до 100 (от 0 до	от 0 до 5 включ. (от 0 до 9,56 включ.)	±20	_	
		191,27)	св. 5 до 100 (св. 9,56 до 191,27)	_	±20	

Определяе-	Модифика-	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускаемой основной погрешности, % приведенная		Время установ- ления выход-
мый ком- понент	ция сен- сора			к ВПИ (верхнему пределу диа- пазона измерений)	относи- тельная	ного сигнала Т _{0,9} , с, не более
	3X/NOx/0-	от 0 до 200 (от 0 до	от 0 до 5 включ. (от 0 до 9,56 включ.)	±20	_	
	200	382,54)	св. 5 до 200 (св. 9,56 до 382,54)	_	±20	
Оксиды азота NO _x	ЭX/NOx/0- 1000	от 0 до 1000	от 0 до 20 включ. (от 0 до 38,25 включ.)	±20	_	15
(в пересчете	1000	(от 0 до 1912,6)	св. 20 до 1000 (св. 38,25 до 1912,6)	_	±20	13
по NO ₂)	ЭX/NOx/0- 2000	от 0 до 2000 (от 0 до 3825,3)	от 0 до 100 включ. (от 0 до 191,27 включ.)	±20	_	
			св. 100 до 2000 (св. 191,27 до 3825,3)	_	±20	
	ЭX/SO2/0- 1	от 0 до 1 (от 0 до 2,66)	от 0 до 0,2 включ. (от 0 до 0,53 включ.)	±20	_	
			св. 0,2 до 1 (св. 0,53 до 2,66)	_	±20	
	ЭX/SO2/0-	от 0 до 5 (от 0 до	от 0 до 1 включ. (от 0 до 2,66 включ.)	±20	_	
Диоксид		13,3)	св. 1 до 5 (св. 2,66 до 13,3)	_	±20	
серы SO ₂	ЭX/SO2/0- 20	от 0 до 20 (от 0 до	от 0 до 5 включ. (от 0 до 13,3 включ.)	±20	_	15
	20	53,2)	св. 5 до 20 (св. 13,3 до 53,2)	_	±20	
	ЭX/SO2/0- 50	от 0 до 50 (от 0 до 133,15)	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20	_	
			св. 10 до 50 (св. 26,6 до 133,15)	_	±20	

Продолжени	е таблицы 4	1		T		
	Manushana	Пуулуулд ауу уулуулу ауууу		Пределы допускаемой основной погрешно- сти, % приведенная		Время установ- ления
мый ком- ция	Модифика- ция сен- сора	объем	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭX/SO2/0-	от 0 до 100 (от 0 до	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20	_	
	100	266)	св. 10 до 100 (св. 26,6 до 266)	_	±20	
	ЭX/SO2/0- 200	от 0 до 200 (от 0 до	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20	_	
	200	532,6)	св. 10 до 200 (св. 26,6 до 532,6)		±20	
Диоксид	ЭX/SO2/0- 500	от 0 до 500 (от 0 до 1331,52)	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20	_	1.5
серы SO ₂			св. 10 до 500 (св. 26,6 до 1331,52)	_	±20	15
	ЭX/SO2/0- 1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 266 включ.)	±20	_	
	1000	2660)	св. 100 до 1000 (св. 266 до 2660)	_	±20	
	ЭX/SO2/0- 2000	от 0 до 2000 (от 0 до	от 0 до 100 включ. (от 0 до 266 включ.)	±20	_	
		5320)	св. 100 до 2000 (св. 266 до 5320)	_	±20	
	ЭX/SOx/0-	от 0 до 1 (от 0 до	от 0 до 0,2 включ. (от 0 до 0,53 включ.)	±20		
Оксиды серы SO _x	1	2,66)	св. 0,2 до 1 (св. 0,53 до 2,66)		±20	15
(в пересчете по SO ₂)	ЭX/SOx/0- 5	/0- от 0 до 5 (от 0 до 13,3)	от 0 до 1 включ. (от 0 до 2,66 включ.)	±20		
			св. 1 до 5 (св. 2,66 до 13,3)		±20	

Продолжени	е таблицы 4	1				
		Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускаемой основной погрешно- сти, %		Время установ- ления
Определяе- мый ком- понент	Модифика- ция сен- сора			приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭX/SOx/0-	от 0 до 20 (от 0 до	от 0 до 5 включ. (от 0 до 13,3 включ.)	±20		
	20	53,2)	св. 5 до 20 (св. 13,3 до 53,2)		±20	
	ЭX/SOx/0-	от 0 до 50	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20		
	50	(от 0 до 133,15)	св. 10 до 50 (св. 26,6 до 133,15)		±20	
	ЭX/SO2/0- 100	от 0 до 100 (от 0 до 266)	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20		15
			св. 10 до 100 (св. 26,6 до 266)		±20	
Оксиды серы SO _x (в пересчете по	ЭX/SOx/0- 200	от 0 до 200 (от 0 до	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20		
SO ₂)	200	532,6)	св. 10 до 200 (св. 26,6 до 532,6)		±20	
	ЭX/SOx/0-	от 0 до 500 (от 0 до	от 0 до 10 включ. (от 0 до 26,6 включ.)	±20		
	500	1331,52)	св. 10 до 500 (св. 26,6 до 1331,52)		±20	
	ЭX/SOx/0- 1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 266 включ.)	±20		
		2660)	св. 100 до 1000 (св. 266 до 2660)		±20	
	9X/SOx/0-		от 0 до 100 включ. (от 0 до 266 включ.)	±20		
	2000		св. 100 до 2000 (св. 266 до 5320)		±20	

Продолжени	Модифика-	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы доптосновной посновной сти, % приведенная	Время установ- ления	
мый ком- понент	ция сен-			к ВПИ (верхнему пределу диа- пазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭX/ CLO2/0-1	от 0 до 1 (от 0 до	от 0 до 0,015 включ. (от 0 до 0,04 включ.)	±20	I	
		2,8)	св. 0,015 до 1 (св. 0,04 до 2,8)	_	±20	
Диоксид хлора ClO ₂ (по хлору)	ЭХ/ CLO2/0-20	от 0 до 20 (от 0 до 56)	от 0 до 0,015 включ. (от 0 до 0,04 включ.)	±20	_	
			св. 0,015 до 20 (св. 0,04 до 56)	-	±20	30
	ЭХ/	от 0 до 50 (от 0 до 140)	от 0 до 1 включ. (от 0 до 2,8 включ.)	±20	_	
	CLO2/0-50		св. 1 до 50 (св. 2,8 до 140)	_	±20	
	ЭХ/ CLO2/0-	LO2/0- (от 0 до	от 0 до 50 включ. (от 0 до 140 включ.)	±20	-	
	500		св. 50 до 500 (св. 140 до 1401)	_	±20	
	ЭХ/С2Н6Ѕ/	от 0 до 10	от 0 до 1 включ. (от 0 до 2,5 включ.)	±20	_	40
Диметилсу	0-10	(от 0 до 25,8)	св. 1 до 10 (св. 2,5 до 25,8)	_	±20	
льфид C ₂ H ₆ S	ЭX/C2H6S/ 0-100	от 0 до 100 (от 0 до	от 0 до 20 включ. (от 0 до 51,6 включ.)	±20	ı	
	0-100	258)	св. 20 до 100 (св. 51,6 до 258)	_	±20	
Карбонилх лорид	ЭX/	от 0 до 1 (от 0 до	от 0 до 0,1 включ. (от 0 до 0,41 включ.)	±20	_	40
COC ₁₂	COC12/0-1	4,11)	св. 0,1 до 1 (св. 0,41 до 4,11)	_	±20	

продолжени	е таблицы 4	1		1		1
Ownoverse	Manudana	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускаемой основной погрешно- сти, %		Время установ- ления
Определяе- мый ком- понент	Модифика- ция сен- сора			приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
Кислород	ЭX/O2/0- 30	от 0 до 30 %	от 0 до 10 % включ.	±5	_	
О2		70	св. 10 до 30 %	_	±5	10
02	ЭX/O2/0- 100	от 0 до 100 %	/ 0	±2	_	
Щелочь NaOH (в пересчете по H2)	ЭХ/ NaOH /0-10	от $0,25$ до 10 мг/м^3		-	±20	60
	ЭХ/ СН3ОН /0- 10	OX/ CH3OH /0- 0 от 0 до 10 (от 0 до 13)	от 0 до 0,01 включ. (от 0 до 0,013 включ.)	±20	-	
			св. 0,01 до 10 (св. 0,013 до 13)	_	±20	
Метанол СН ₃ ОН	ЭХ/ СН3ОН /0- 50	от 0 до 50 (от 0 до 67)	от 0 до 5 включ. (от 0 до 6,7 включ.)	±15	_	90
CH3OH			св. 5 до 50 (св. 6,7 до 67)	-	±15	
	ЭХ/ СН3ОН /0-	от 0 до 500 (от 0 до	от 0 до 50 включ. (от 0 до 67 включ.)	±15	_	
	500	266)	св. 50 до 500 (св. 67 до 266)	_	±15	
	ЭX/ CH3SH /0- 5	от 0 до 5 (от 0 до	от 0 до 0,015 включ. (от 0 до 0,03 включ.)	±20	_	
	3	9,9)	св. 0,015 до 5 (св. 0,03 до 9,9)	_	±15	
Метантиол CH ₃ SH	ЭХ/ СН3SH /0-	от 0 до 10	от 0 до 1 включ. (от 0 до 2 включ.)	±15	_	90
	10	(от 0 до 20)	св.1 до 10 (св. 2 до 20)	_	±15	
	ЭX/ CH3SH /0- 50	от 0 до 50	от 0 до 2,5 включ. (от 0 до 5 включ.)	±20	_	
		CH3SH /0- 50 (от 0 до 99)	св. 2,5 до 50 (св.5 до 99)	_	±20	

Продолжени	ие таблицы 4	T		1		1
Определя-	Модифи-	Диапазон измерений		Пределы допу основной по сти, % приведенная	грешно-	Время установ-
емый ком- кация сен- понент сора		объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		к ВПИ (верхнему пределу диа- пазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭХ/ СН3SH /0-	от 0 до 100 (от 0 до	от 0 до 10 включ. (от 0 до 20 включ.)	±20	_	
Метантиол	100	200)	св.10 до 100 (св. 20 до 200)	_	±20	90
CH ₃ SH	ЭХ/ СН3SH /0-	от 0 до 1000	от 0 до 20 включ. (от 0 до 40 включ.)	±20	_	
	2000	(от 0 до 3991)	св. 20 до 1000 (св. 40 до 3991)	_	±20	
Моносила н (силан)	$(силан)$ $\begin{vmatrix} 3X/S1H4/0\\2 \end{vmatrix}$	от 0 до 2 (от 0 до	от 0 до 0,5 включ. (от 0 до 0,67 включ.)	±20	-	35
SiH ₄		2,67)	св. 0,5 до 2 (св. 0,67 до 2,67)	_	±15	
	ЭX/SiH4/0 -15	(OT () TO	от 0 до 1 включ. (от 0 до 1,34 включ.)	±20	-	
			св. 1 до 15 (св. 1,34 до 20)	_	±15	
Моносила	ЭX/SiH4/0 -50	от 0 до 50 (от 0 до	от 0 до 10 включ. (от 0 до 13,4 включ.)	±20	_	
н (силан) SiH ₄	30	67)	св. 10 до 50 (св. 13,4 до 67)	_	±20	35
	ЭХ/SiH4/0 -100	ЭХ/SiH4/0 от 0 до 100	от 0 до 10 включ. (от 0 до 13,4 включ.)	±20	_	
	-100	133)	св. 10 до 100 (св. 13,4 до 133)	_	±20	
	ЭХ/О3/0-1	от 0 до 1	от 0 до 0,05 включ. (от 0 до 0,1 включ.)	±20	_	
	JA/UJ/U-1	(от 0 до 2)	св. 0,05 до 1 (св. 0,1 до 2)	_	±20	20
Озон О3		от 0 до 5 (от 0 до 10)	от 0 до 1 включ. (от 0 до 2 включ.)	±20	_	
	ЭХ/О3/0-5		св. 1 до 5 (св. 2 до 10)	_	±20	

Определя- емый ком- понент	Модифи- кация сен- сора	объем	изон измерений ной доли, млн ⁻¹ сонцентрации, мг/м ³)	Пределы доптосновной посновной пости, % приведенная к ВПИ (верхнему пределу диапазона измерений)	грешно-	Время установ- ления выход- ного сигнала $T_{0,9}$, с, не более
	ЭX/ C ₂ H ₄ O	от 0 до 10	от 0 до 1 включ. (от 0 до 1,8 включ.)	±20	_	
	/10	(от 0 до 18)	св. 1 до 10 (св. 1,8 до 18)	_	±20	
	ЭХ/ С2Н4О	от 0 до 30	от 0 до 1 включ. (от 0 до 1,8 включ.)	±20	_	
	/30	(от 0 до 55)	св. 1 до 30 (св. 1,8 до 55)	_	±20	
	ЭХ/ C ₂ H ₄ O	от 0 до 50 (от 0 до	от 0 до 5 включ. (от 0 до 9 включ.)	±20	_	50
Оксид	/50	91)	св. 5 до 50 (св. 9 до 91)	_	±20	
этилена С ₂ H ₄ O	ЭX/ C ₂ H ₄ O /100	от 0 до 100 (от 0 до 182)	от 0 до 10 включ. (от 0 до 18 включ.)	±20	_	
			св. 10 до 100 (св. 18 до 182)	_	±20	
	ЭX/ C ₂ H ₄ O /200	от 0 до 200 (от 0 до	от 0 до 20 включ. (от 0 до 36 включ.)	±20	_	
		365)	св. 20 до 200 (св. 36 до 365)	_	±20	
	ЭХ/ C ₂ H ₄ O /1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 182 включ.)	±20	_	50
	71000	1827)	св. 100 до 1000 (св. 182 до 1827)	_	±20	
	ЭX/CO/0-	от 0 до 10 (от 0 до	от 0 до 1 включ. (от 0 до 1,16 включ.)	±20	_	
Оксид углерода	10	11,6)	св. 1 до 10 (св. 1,16 до 11,6)	_	±20	10
CO	ЭX/CO/0- 50	от 0 до 50 (от 0 до 58)	от 0 до 5 включ. (от 0 до 5,8 включ.)	±20	_	
			св. 5 до 50 (св. 5,8 до 58)	_	±20	

Продолжени	ие таблицы 4	1		I —		
				Пределы доп		Время
				основной по	-	установ-
		_		сти, %	0	ления
Определя-	Модифи-	Диапазон измерений		приведенная		выход-
емый ком-	кация сен-		ной доли, млн ⁻¹	к ВПИ		ного
понент	copa	(массовой к	онцентрации, мг/м ³)	(верхнему	относи-	сигнала
				пределу диа-	тельная	T _{0,9} , c,
				пазона изме-		не более
				рений)		не облес
			от 0 до 10 включ.			
	ЭХ/СО/0-	от 0 до 100	(от 0 до 11,6	±20	_	
	100	(от 0 до	включ.)			
	100	116)	св. 10 до 100	_	±20	
			(св. 11,6 до 116)		±20	
			от 0 до 20 включ.			
	ЭХ/СО/0-	от 0 до 200	(от 0 до 23,2	±20	_	
200	(от 0 до	включ.)				
	200	232,4)	св. 20 до 200		±20	
			(св. 23,2 до 232,4)	_	±∠0	
	ЭX/CO/0- 500	от 0 до 500	от 0 до 50 включ.	±20		
			(от 0 до 58 включ.)	±20	_	
		(от 0 до 581)	св. 50 до 500		±20	
		361)	(св. 58 до 581)	_	±20	
		от 0 до	от 0 до 100 включ.			
Orrorry	ЭХ/СО/0-	1000	(от 0 до 116	±20	_	
Оксид	1000	(от 0 до	включ.)			10
углерода СО	1000	1162)	св. 100 до 1000		±20	10
			(св. 116 до 1162)	_	±∠0	
		0	от 0 до 100 включ.	±20	_	
	ЭХ/СО/0-	от 0 до 2000	(от 0 до 116			
	2000	(от 0 до	включ.)			
	2000	2324)	св. 100 до 2000		±20	
		2324)	(св. 116 до 2324)	_	±20	
		от 0 до	от 0 до 500 включ.			
	ЭХ/СО/0-	5000	(от 0 до 581	±20	_	
	5000	(от 0 до	включ.)			
	3000	5809)	св. 500 до 5000		±20	
		3607)	(св. 581 до 5809)	_	±20	
		от 0 до	от 0 до 1000 включ.			
	ЭХ/СО/0-	10000	(от 0 до 1162	±20	_	
	10000	(от 0 до	включ.)			
	10000	11620)	св. 1000 до 10000		±20	1
		11020)	(св. 1162 до 11620)	_	±∠U	
			от 0 до 1 включ.			
Оксид		от 0 до 5	(от 0 до 1,25	±20	_	
азота NO	ЭX/NO/0-5	(от 0 до	включ.)	-		15
asura inu	6,24)	св. 1 до 5		±20		
			(св. 1,25 до 6,24)		±∠U	

продолжен	ие таблицы 4	T		1		1
	W 1	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускаемой основной погрешно- сти, %		Время установ- ления
Определя- емый ком- понент	Модифи- кация сен- сора			приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭX/NO/0-	от 0 до 10 (от 0 до	от 0 до 1 включ. (от 0 до 1,25 включ.)	±20	_	
	10	12,5)	св. 1 до 10 (св. 1,25 до 12,5)	_	±20	
	ЭX/NO/0- 50	от 0 до 50 (от 0 до	от 0 до 5 включ. (от 0 до 6,24 включ.)	±20	_	
	30	62,4)	св. 5 до 50 (св. 6,24 до 62,4)	_	±20	15
	ЭХ/NO/0- 100	от 0 до 100 (от 0 до 124,7)	от 0 до 10 включ. (от 0 до 12,48 включ.)	±20	_	
Оксид			св. 10 до 100 (св. 12,48 до 124,7)	_	±20	
азота NO	ЭX/NO/0- 250	от 0 до 250 (от 0 до 311,89)	от 0 до 50 включ. (от 0 до 62,38 включ.)	±20	_	
			св. 50 до 250 (св. 62,38 до 311,89)	_	±20	
	ЭX/NO/0-	от 0 до 1000	от 0 до 100 включ. (от 0 до 124,7 включ.)	±20	_	
	1000	(от 0 до 1247,5)	св. 100 до 1000 (св. 124,7 до 1247,5)	_	±20	
	9X/NO/0-	от 0 до 2000	от 0 до 100 включ. (от 0 до 124,7 включ.)	±20	_	
	2000	(от 0 до 2495)	св. 100 до 2000 (св. 124,7 до 2495)	_	±20	
Сероводор од H ₂ S	ЭX/H ₂ S/ 0-	/H ₂ S/ 0- от 0 до 1 (от 0 до 1,41)	от 0 до 0,007 включ. (от 0 до 0,0099 включ.)	±20	-	10
	1		св. 0,0099 до 1 (св. 0,0099 до 1,41)	_	±20	

Продолжен	ие таблицы 4				Пределы допускаемой основной погрешно- сти, %	
Определя- емый ком- понент	Модифи- кация сен- сора	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	ления выход- ного сигнала Т _{0,9} , с, не более
	ЭX/H ₂ S/ 0-	от 0 до 10 (от 0 до	от 0 до 1 включ. (от 0 до 1,41 включ.)	±15	_	
	10	14,1)	св. 1 до 10 (св. 1,41 до 14,1)	_	±15	
	ЭX/H ₂ S/ 0-	от 0 до 50 (от 0 до	от 0 до 1 включ. (от 0 до 1,41 включ.)	±15	_	
	50	70,8)	св. 1 до 50 (св. 1,41 до 70,8)	_	±15	
	ЭX/H ₂ S/ 0- 100	от 0 до 100	от 0 до 10 включ. (от 0 до 14,1)	±15	_	
		(от 0 до 141,6)	от 1 до 100 (св. 1,41 до 141,6)	_	±15	
	ЭX/H ₂ S/ 0- 200	Гот О по	от 0 до 20 включ. (от 0 до 28,4 включ.)	±15	_	
	200		св. 20 до 200 (св. 28,4 до 284)	_	±15	
Сероводор од H ₂ S	ЭX/H ₂ S/ 0-	от 0 до 500 (от 0 до	от 0 до 20 включ. (от 0 до 28,4 включ.)	±15	_	10
	500	708,4)	св. 20 до 500 (св. 28,4 до 708,4)	_	±15	
	ЭХ/H ₂ S/ 0-	от 0 до 1000	от 0 до 100 включ. (от 0 до 141,6 включ.)	±15	_	
	1000	(от 0 до 1416,7)	св. 100 до 1000 (св. 141,6 до 1416,7)	_	±15	
	ЭX/H ₂ S/ 0-	от 0 до 2000	от 0 до 200 включ. (от 0 до 284 включ.)	±20	-	
	2000	(от 0 до 2833)	св. 200 до 2000 (св. 284 до 2833)	_	±20	
	ЭX/H ₂ S/ 0- 5000	от 0 до 5000 (от 0 до 7083)	от 0 до 200 включ. (от 0 до 284 включ.)	±20	_	
			св. 200 до 5000 (св. 284 до 7083)	_	±20	

продолжени	ие таблицы 4	ī				1
				Пределы до		Время
				мой основ		установ-
				грешнос	ти, %	_
Определяе-	Молифии	Диапазон измерений		приведен-		ления
мый ком-	Модифика-	объем	ной доли, млн ⁻¹	ная к ВПИ		выход-
понент	ция сенсора	(массовой в	концентрации, мг/м ³)	(верхнему	относи-	НОГО
			1	пределу	тельная	сигнала
				диапазона		T _{0,9} , c,
				измерений)		не более
			от 0 до 500 включ.	1 /		
		от 0 до	(от 0 до 708,3	±20	_	
Сероводор	ЭX/H ₂ S/ 0-	10000	включ.)	_20		
од H2S	10000	(от 0 до	св. 500 до 10000			10
ОД 1125	10000	14167,38)	(св. 708,3 до		±20	
		14107,38)	, , , ,	_	±20	
			14167,38) от 0 до 1 включ.			
Э: 5		05		120		
	ЭX/CS2/ 0- 5	от 0 до 5 (от 0 до	(от 0 до 1,42	±20	_	
			включ.)			-
		7,08)	св. 1 до 5	_	±20	
			(св. 1,42 до 7,08)			-
			от 0 до 1 включ.			
	ЭX/CS2/ 0-	от 0 до 10	(от 0 до 1,42	±20	_	
	10	(от 0 до	включ.)			
	- ~	14,17)	св. 1 до 10	_	±20	
			(св. 1,42 до 14,17)		-20	
			от 0 до 1 включ.			
	ЭX/CS2/ 0-	от 0 до 20	(от 0 до 1,42	±20	_	
	20	(от 0 до	включ.)			15
	20	28,33)	св. 1 до 20		120	
Camazana			(св. 1,42 до 28,4)	_	±20	
Сероуглер			от 0 до 5 включ.			
од CS ₂	DW/GG2/ 0	от 0 до 50	(от 0 до 7,08	±20	_	
	ЭX/CS2/ 0-	(от 0 до	включ.)			
	50	70,84)	св. 5 до 50		. 20	
		, ,	(св. 7,08 до 70,84)	_	±20	
			от 0 до 10 включ.			1
		от 0 до 100	(от 0 до 14,7	±20	_	
	ЭX/CS2/ 0-	(от 0 до	включ.)			
	100	141,67)	св. 10 до 100			-
		111,07	(св. 14,7 до 141,67)	_	±20	
			от 0 до 100 включ.			
		от 0 до	(от 0 до 141,67	±20		
	ЭX/CS2/ 0-	1000		±20	_	
			включ.)			15
	1000	(от 0 до	св. 100 до 1000	_	120	
		1416,7)	(св. 141,67 до		±20	
			1416,7)			

Определяе-	Модифика-		зон измерений ной доли, млн ⁻¹	Пределы допускае- мой основной по- грешности, % приведен- ная к ВПИ		Время установ- ления выход-
понент	ция сенсора		онцентрации, мг/м ³)	(верхнему пределу диапазона измерений)	относи- тельная	ного сигнала Т _{0,9} , с, не более
Серная кислота H ₂ SO ₄ (в пересчете по SO ₂)	ЭX/H2SO4/ 0-20		г 0,12 до 5 5 до 20 мг/м³)	_	±20	15
	ЭХ/С2Н4О	от 0 до 10	от 0 до 2 включ. (от 0 до 5 включ.)	±20	_	
Уксусная	2-10	(от 0 до 25)	св. 2 до 10 включ.) (св. 5 до 25 включ.)	_	±20	
кислота С ₂ H ₄ O ₂	ЭХ/С2Н4О 2-30	от 0 до 30 (от 0 до 75)	от 0 до 5 включ. (от 0 до 12,5 включ.)	±20	_	15
			св. 5 до 30 (св. 12,5 до 75)	_	±20	
Фтан Е	ЭX/F2/ 0-1	от 0 до 1 (от 0 до 1,58)	от 0 до 0,1 включ. (от 0 до 0,158 включ.)	±15	_	30
Фтор F ₂			св. 0,1 до 1 (св. 0,158 до 1,58 включ.)	_	±15	30
	ЭX/PH3/ 0- 5	от 0 до 5 (от 0 до 7,07)	от 0 до 0,07 включ. (от 0 до 0,1 включ.)	±15	_	
			св. 0,07 до 5 (св. 0,1 до 7,07)	_	±15	
	ЭХ/РН3/ 0-		от 0 до 0,35 включ. (от 0 до 0,49 включ.)	±15	_	
Фосфин РН ₃	10	14,3)	св. 0,35 до 10 (св. 0,49 до 14,3)	_	±15	
	ЭX/PH3/ 0- 50	от 0 до 50 (от 0 до	от 0 до 1 включ. (от 0 до 1,41 включ.)	±15	_	10
	30	70,6)	св. 1 до 50 (св. 01,41 до 70,6)	_	±15	
	ЭX/PH3/ 0- 200	от 0 до 200 (от 0 до	от 0 до 20 включ. (от 0 до 28,27 включ.)	±20	_	
		282,6)	св. 20 до 200 (св. 28,27 до 282,6)	_	±20	

	е таблицы 4	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускае- мой основной по- грешности, %		Время установ- ления	
Определяе- мый ком- понент	Модифика- ция сенсора			приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более	
	ЭX/PH3/ 0- 1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 141,3 включ.)	±20	_		
Фосфин	1000	1413)	св. 100 до 1000 (св. 141,3 до 1413)	_	±20	10	
PH ₃	ЭX/PH3/ 0- 2000	от 0 до 2000 (от 0 до	от 0 до 200 включ. (от 0 до 282,6 включ.)	±20	_	10	
	2000	2826)	св. 200 до 2000 (св. 282,6 до 2826)	_	±20		
Фенол	ЭX/C6H5O H/0-10	от 0 до 10 (от 0 до 39,1)	от 0 до 1 включ. (от 0 до 3,9 включ.)	±15		20	
C ₆ H ₅ OH			св. 1 до 10 (св. 3,9 до 39,1)		±15	20	
	ЭX/ CH2O / 0-5	от 0 до 5 (от 0 до 6,3)	от 0 до 0,19 включ. (от 0 до 0,25 включ.)	±15	_		
			от 0,19 до 5 (св. 0,25 до 6,3)	_	±15		
	ЭX/ CH2O / 0-10	от 0 до 10 (от 0 до 12,6)	от 0 до 0,4 включ. (от 0 до 0,5 включ.)	±15	-		
			св. 0,4 до 10 (св. 0,5 до 12,6)	_	±15		
Фотмолич	ЭХ/ СН2О /	от 0 до 50	от 0 до 1 включ. (от 0 до 1,2 включ.)	±15	_		
Формальде гид CH ₂ O	0-50	(от 0 до 63)	св. 1 до 50 (св. 1,2 до 63)	_	±15	20	
	ЭX/ CH2O / 0-100	от 0 до 100 млн ⁻¹	от 0 до 10 включ. (от 0 до 12,6 включ.)	±20	_		
	0-100	(от 0 до 126)	св. 10 до 100 (св. 12,6 до 126)		±20		
	ЭX/ CH2O / 0-200	от 0 до 200 (от 0 до	от 0 до 20 включ. (от 0 до 25,2 включ.)	±20	_		
		252,2)	св. 20 до 200 (св. 25,2 до 252,2)	_	±20		

Продолжени	е таблицы 4	T				I
				Пределы до	Время	
				мой основной по-		установ-
				грешности, %		ления
Определяе-	Модифика-		зон измерений	приведен-		
мый ком-	ция сен-	объем	ной доли, млн ⁻¹	ная к ВПИ		выход-
понент	copa	(массовой к	сонцентрации, мг/м ³)	(верхнему	относи-	НОГО
	-	,	,	пределу	тельная	сигнала
				диапазона		$T_{0,9}, c,$
				измерений)		не более
			от 0 до 20 включ.	1 /		
		от 0 до 500	от 0 до 25,2	±20		
	ЭХ/ СН2О	(от 0 до	включ.)			
	/ 0-500	630)	св. 20 до 500			
		030)	(св. 25,2 до 630)	_	±20	
Формальде			от 0 до 200 включ.			20
гид СН2О		o	(от 0 до 252,2	±20		20
		от 0 до		±20	_	
	ЭX/ CH2O	2000	включ.)			
	/ 0-2000	(от 0 до 2522,6)	св. 200 до 2000		. 20	
			(св. 252,2 до	_	±20	
			2522,6)			
	ЭX/ HF/ 0- 1	от 0 до 1 (от 0 до 0,83)	от 0 до 0,5 включ.			
			(от 0 до 0,42	±15	_	
			включ.)			
			св. 0,5 до 1		±15	
			(св. 0,42 до 0,83)	_	±13	30
	ЭX/ HF/ 0- 10	от 0 до 10 (от 0 до 8,32)	от 0 до 0,5 включ.			30
			(от 0 до 0,42	±15	- 15	
			включ.)			
			св. 0,5 до 10			
			(св. 0,42 до 8,32)	_	±15	
			от 0 до 1 включ.			
			(от 0 до 0,83	±15	_	
Фтористый	ЭX/ HF/ 0-	от 0 до 30	включ.)			
водород	30	(от 0 до 25)	св. 1 до 30			
HF			(св. 0,83 до 25)	_	±15	
			от 0 до 1 включ.			
		от 0 до 50	(от 0 до 0,83	±20		
	ЭX/ HF/ 0-	(от 0 до 30	включ.)		_	
	50		Ź			30
		41,5)	св. 1 до 50	_	±20	
			(св. 0,83 до 41,5)			
			от 0 до 10 включ.			
	D37/335/0	0 100	(от 0 до 8,32	±20	_	
	ЭX/ HF/ 0-	от 0 до 100	включ.)			
	100	(от 0 до 83)	св. 10 до 100			-
			(св. 8,32 до 83)	_	±20	
			(ов. 0,52 до 05)			

Определяемый компонент Модификация септора Отористый водород НF	Продолжени	е таблицы 4			Прецепы п	опускае-	
Определяемый комполент поисит поисит поисит ора Определяемый комполент поисит ора От 0 до			Лиапазон измерений				_
Определяемый компонент Модифика понент Диапазон измерений объемной доли, млн¹¹ (массовой конпентрации, мг/м³) приведен пак к ВПИ (верхнему пределу диапазона измерсний) Лина к ВПИ (верхнему пределу диапазона измерсний) Приведен пак к ВПИ (верхнему пределу диапазона измерсний) Относительная дизмерсний Выхольного сигнаная То.9, с, не более Относительная дизмерсний) Приведен пак к ВПИ (верхнему пределу диапазона измерсний) Относительная дизмерсний Выхольного сигнаная То.9, с, не более Относительная дизмерсний Диапазона измерсний Диапазона измерсний Относительная дизмерсний Диапазона измерсний Диапазона измерсний Диапазона измерсний Относительная дизмерсний Диапазона измерсний Относительная дизмерсний Диапазона измерсний Диапазона измерсний <t< td=""><td></td><td></td></t<>							
мый компонент шия сеп- сора объемной доли, млп¹ (массовой концентрации, мг/м³) ная к ВПИ (предлему диапазона измерений) относи- тельная предлему диапазона измерений) вымодно- сит нала То.9, с, пс болсе Фтористый водород НГ ЭХ/ НГ/ 0- 2000 от 0 до 831) от 0 до 0000 (от 0 до 831) от 0 до 50 включ. (от 0 до 831) ±20 — — ±20 — — — 30 У/ НГ/ 0- 2000 эх/ НГ/ 0- 2000 от 0 до (от 0 до (от 0 до 147,7) от 0 до 100 включ. (от 0 до 0,44 ±20 — — — 30 ЭХ/ СL2/ 0-10 от 0 до 147,7) от 0 до 10 (от 0 до 29,4) от 0 до 100 включ. (от 0 до 14,7) — ±20 —	Опрелеляе-	Молифика-				7111, 70	
понент сора (массовой концентрации, мг/м³) (верхнему пределу диапазона измерений) от опосительная диаперений пельная диапазона измерений) от опосительная диамерений) от опосительная диамерений от опосительная диамерений </td <td>-</td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	-	_			_		
Отористый водород НГ ——————————————————————————————————		,		_		относи-	
Отористый водород НГ ЗX/ НГ/ 0- 2000	110110111	l csp.	()	, -		
Фтористый водород НГ 3X/ HF/ 0- 1000 (от 0 до 1000 квлюч.) (от 0 до 500 включ.) (от 0 до 41,5 включ.) (от 0 до 6831) ±20						1 001211001	
Отористый водород HF							не более
Фтористый водород HF 3X/ HF/ 0- 1000			от О по	от 0 до 50 включ.			
Фтористый водород HF 2000		3Y/ HE/ 0		(от 0 до 41,5	±20	_	
Фтористый водород HF 331				включ.)			
Solopopa HF	Фтористий	1000		св. 50 до 1000		⊥20	
HF 2000	_		651)	(св. 41,5 до 831)	_	±20	30
3X/ HF/ 0-2000	_		от О до	1			30
2000 (от 0 до 1662) (от 0 до 1662) (от 0 до 2000 (св. 83,1 до 1662) (от 0 до 0,15 включ.) (от 0 до 0,44 включ.) (от 0 до 0,44 до 14,7) (от 0 до 1 включ.) (от 0 до 1 включ.) (от 0 до 1,47 включ.) (от 0 до 1,47 включ.) (от 0 до 1,47 до 29,4) (от 0 до 50 (св. 1,47 до 29,4) (от 0 до 73,5) (св. 7,35 до 73,5) (св. 7,35 до 73,5) (св. 7,35 до 73,5) (св. 14,7 до 147,0) (от 0 до 100 (св. 14,7 до 147,0) (от 0 до 204 (св. 14,7 до 147,0) (от 0 до 29,4	111	ЭX/ HF/ 0-			±20	_	
SA/ CL2/ 0-10 1662) CB. 100 до 2000 CB. 83,1 до 1662) CB. 83,1 до 1662) CB. 83,1 до 1662) CB. 83,1 до 1662) CB. 01,0 160 CB. 01,0 15 включ. CB. 01,15 до 10 CB. 01,47 CB. 01,15 до 10 CB. 01,44 до 14,7) CB. 01,15 до 10 CB. 01,44 до 14,7) CB. 01,147 ±15 CB. 1 до 20 CB. 1,47 до 29,4) CB. 5 до 50 CB. 7,35 до 73,5) CB. 5 до 50 CB. 7,35 до 73,5) CB. 10 до 100 CB. 14,7 до 147,0) CB. 10 до 200 CB. 14,7 до 147,0) CB. 10 до 200 CB. 14,7 до 147,0) CB. 20 до 200 CB. 29,4 до 294) CB. 20 до 200 CB. 2		-					=
SX/CL2/ 0-10 OT 0 до 10 (от 0 до 0,44 ±15 — 15		2000		, ,	_	±20	
3X/ CL2/ 0-10 от 0 до 10 (от 0 до 14,7) (от 0 до 0,44 включ.) ±15 — 3X/CL2/ 0- 20 от 0 до 20 (от 0 до (от 0 до 29,4) от 0 до 20 (от 0 до (от 0 до 29,4) от 0 до 20 (от 0 до (от 0 до 29,4) от 0 до 50 (от 0 до (от 0 до 29,4) — ±15 — 3X/CL2/ 0-50 от 0 до 50 (от 0 до 73,5) от 0 до 50 (от 0 до (от 0 до 147,0) (от 0 до (от 0 до (от 0 до 147,0) ±15 — — ±15 — 3X/ CL2/ 0-100 от 0 до 100 (от 0 до 147,0) от 0 до 100 (от 0 до (от 0 до (от 0 до 294) (от 0 до (от 0 до (от 0 до 294) ±20 — ±20 — 3X/ CL2/ 0-200 от 0 до 200 (от 0 до 294) от 0 до 200 (от 0 до (от 0 до 294) от 0 до 200 (от 0 до (от 0 до 294) ±20 — ±20 — 3X/ CL2/ 0-200 от 0 до 500 (от 0 до 294) от 0 до 500 (от 0 до 294) включ.) — ±20 — 3X/ CL2/ 0-200 от 0 до 500 (от 0 до 294) от 0 до 500 (от 0 до 294) от 0 до 500 (от 0 до 273,5 ±20 — ±20				`			
SA/ CL2/ 0-10 14,7)			(от 0 до		115		
14,7) CB. 0,15 до 10 CB. 0,44 до 14,7) — ±15 — 15 —				1	±15	_	
SX/CL2/ 0-20 OT 0 до 20 (от 0 до 20 (от 0 до 1 включ.) OT 0 до 1 включ.) CB. 1 до 20 (св. 1,47 до 29,4) OT 0 до 50 ключ. OT 0 до 100 (св. 7,35 до 73,5) OT 0 до 100 включ. OT 0 до 100 включ. OT 0 до 100 (св. 7,35 до 73,5) OT 0 до 100 включ. OT 0 до 100 (св. 14,7 до 147,0) OT 0 до 200 (св. 29,4 до 294) OT 0 до 500 (св. 29,4 до 294) OT 0 до 73,5 OT							
X/CL2/ 0- 20 от 0 до 20 (от 0 до 20 (от 0 до 29,4) от 0 до 1 включ. (от 0 до 1,47 включ.) ±15 — ЭХ/ CL2/ 0-50 от 0 до 50 (от 0 до 7,35 включ.) от 0 до 5 включ. (от 0 до 7,35 включ.) ±15 — Ух/ СL2/ 0-100 от 0 до 100 (от 0 до 100 (от 0 до 14,7 включ.) от 0 до 100 (св. 7,35 до 73,5) — ±15 ЭХ/ CL2/ 0-100 от 0 до 200 (от 0 до 200 (от 0 до 200 (от 0 до 20 включ.)) св. 10 до 100 (св. 14,7 до 147,0) — ±20 ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 29,4 включ.) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 200 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ СL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — — ±20 — ЭХ/ СL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — — — ±20 — ЭХ/ СL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — — ±20 — <td></td> <td></td> <td>_</td> <td>±15</td> <td></td>					_	±15	
ЭХ/CL2/ 0-20 от 0 до 20 (от 0 до 1,47 включ.) ±15 — 20 св. 1 до 20 (св. 1,47 до 29,4) — ±15 ЭХ/ CL2/ 0-50 от 0 до 50 (от 0 до 7,35 включ.) (от 0 до 7,35 включ.) — ±15 ЭХ/ CL2/ 0-50 от 0 до 100 (от 0 до 100 (от 0 до 100 (от 0 до 14,7 включ.)) от 0 до 100 включ.) — ±15 ЭХ/ CL2/ 0-100 от 0 до 200 (от 0 до 200 (от 0 до 29,4 включ.)) = ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 включ.) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 включ.) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 включ. — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 включ. — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 включ. — ±20 — ЭХ/ СL2/ 0-200 от 0 до 500 включ. — ±20 — <							-
Xлор Cl2 (от 0 до до 29,4) включ.) — ±15 3X/ CL2/ 0-50 от 0 до 50 (от 0 до 7,35 включ.) — ±15 9X/ CL2/ 0-50 от 0 до 50 (от 0 до 7,35 включ.) — ±15 0-50 от 0 до 50 (от 0 до 7,35 включ.) — ±15 0-50 от 0 до 100 (от 0 до 100 (от 0 до 10, 73,5) — ±15 0-50 от 0 до 100 (от 0 до 10, 73,5) — ±15 0-50 от 0 до 100 (от 0 до 10, 73,5) — ±20 0-50 от 0 до 200 (от 0 до 200 (от 0 до 29,4 включ.) — ±20 0-100 0 до 200 (от 0 до 29,4 включ.) — ±20 0-200 0 до 200 (от 0 до 29,4 до 294) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 50 включ.) — ±20 0-200 0 до 200 (от 0 до 73,5 — ±20 0-200 0 до 200 (от 0 до 73,5			(от 0 до	To the second se	+15	_	
20 29,4					_13		
SX/CL2/ 0-50 OT 0 до 50						. 1.5	
Xлор Cl2 от 0 до 50 (от 0 до 7,35 (от 0 до 7,35 (от 0 до 7,35 (от 0 до 7,35)) ±15				1	_	±15	
УХ/ СL2/ 0-50 от 0 до 50 (от 0 до 73,5) (от 0 до 7,35 включ.) ±15 — Хлор Сl2 От 0 до 100 (от 0 до 100 (от 0 до 147,0) от 0 до 100 (от 0 до 100 (от 0 до 147,0) (от 0 до 14,7 включ.) ±20 — ЭХ/ СL2/ 0-200 от 0 до 200 (от 0 до (от 0 до 294) от 0 до 20 включ. (от 0 до 29,4 включ.) — ±20 ЭХ/ СL2/ 0-200 от 0 до 200 (от 0 до 294) (от 0 до 29,4 включ.) ±20 — ЭХ/ СL2/ 0-200 от 0 до 200 (от 0 до 200 (от 0 до 50 включ.) — ±20 ЭХ/ СL2/ 0-200 от 0 до 500 (от 0 до 50 включ.) — ±20 ЭХ/ СL2/ 0-200 от 0 до 500 (от 0 до 73,5 ±20 —			(от 0 до				-
Xлор Cl2 (от 0 до 73,5) включ.) — ±15 ЭХ/ CL2/ 0-100 от 0 до 100 (от 0 до 10, 14,7 (от 0 до 14,7 (от 0 до 14,7 до 147,0)) ±20 — ±20 ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 29,4 (от 0 до 29,4 (от 0 до 29,4 до 294)) ±20 — ±20 ЭХ/ CL2/ 0-200 от 0 до 500 (от 0 до 50 включ.) — ±20 — ±20 ЭХ/ CL2/ (от 0 до 294) От 0 до 50 включ.) — ±20 — ±20 ЭХ/ CL2/ (от 0 до 500) От 0 до 50 включ. — ±20 — ±20					±15	_	
Xлор Cl2 73,5) св. 5 до 50 (св. 7,35 до 73,5) — ±15 ЭX/ CL2/ 0-100 от 0 до 100 (от 0 до 14,7 (от 0 до 14,7 до 147,0)) ±20 — ±20 ЭX/ CL2/ 0-200 от 0 до 200 (св. 14,7 до 147,0) — ±20 — ±20 ЭX/ CL2/ 0-200 от 0 до 200 (св. 14,7 до 147,0) — ±20 — ±20 ЭХ/ CL2/ 0-200 от 0 до 200 (св. 29,4 до 29,4 до 29,4) — ±20 — ±20 ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ±20 ЭХ/ CL2/ (от 0 до 500 до 500 (св. 29,4 до 294) — ±20 — ±20							
Xлор Cl2 (св. 7,35 до 73,5) ЭХ/ CL2/ 0-100 от 0 до 100 (от 0 до 147,0) (от 0 до 14,7 включ.) ±20 — ЭХ/ CL2/ 0-200 от 0 до 200 (св. 14,7 до 147,0) — ±20 ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 294) (от 0 до 29,4 включ.) ±20 — ЭХ/ CL2/ 0-200 от 0 до 200 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (св. 29,4 до 294) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (от 0 до 50 включ.) (от 0 до 73,5 ±20 —		0-30		·		+15	
ЭX/ CL2/ 0-100 от 0 до 100 (от 0 до 147,0) от 0 до 10 включ. включ.) ±20 — ЭX/ CL2/ 0-200 от 0 до 200 (от 0 до 20 включ.) — ±20 — ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 29,4 включ.) ±20 — ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 29,4 включ.) ±20 — ЭХ/ CL2/ 0-200 от 0 до 500 (от 0 до 50 включ.) — ±20 ЭХ/ CL2/ 0-200 от 0 до 500 (от 0 до 73,5 ±20 —	Vuon Cla			(св. 7,35 до 73,5)	_	±13	30
9X/ CL2/ 0-100 (от 0 до 147,0) св. 10 до 100 — ±20 от 0 до 200 ключ. от 0 до 200 ключ. (от 0 до 29,4 ±20 — ключ.) св. 20 до 200 — ±20 от 0 до 294) от 0 до 200 ключ. от 0 до 200 ключ. от 0 до 200 (св. 29,4 до 294) от 0 до 50 включ.	Alop Cl2						30
0-100		3X/CL2/	от 0 до 100		±20	_	
ЭX/ CL2/ 0-200 CB. 10 до 100 (св. 14,7 до 147,0) — ±20 — ±20 — OT 0 до 200 (от 0 до 29,4 ±20 — CB. 20 до 200 — ±20 — ±20 — OT 0 до 500 (от 0 до 50 включ.) — ±20 — OT 0 до 500 включ. — — — OT 0 до 500 включ. — — — — — — — — — — — — — — — — — —			`				
ЭX/ CL2/ 0-200 от 0 до 200 (от 0 до 29,4 ±20 — (от 0 до 20 включ.) — ±20 Св. 20 до 200 (св. 29,4 до 294) — ±20 от 0 до 50 включ. от 0 до 500 (от 0 до 73,5 ±20 — (от 0 до 50 включ.) — — — — — — — — — — — — — — — — — — —		0 100	147,0)		_	±20	
ЭХ/ CL2/ 0-200 от 0 до 200 (от 0 до 294) (от 0 до 29,4 включ.) ±20 — св. 20 до 200 (св. 29,4 до 294) — ±20 ЭХ/ CL2/ от 0 до 500 (от 0 до 500 (от 0 до 73,5 ±20 —						-20	
ЭХ/ CL2/ 0-200 (от 0 до 294) включ.) св. 20 до 200 (св. 29,4 до 294) — ±20 ЭХ/ CL2/ ОТ 0 до 500 (от 0 до 500 (от 0 до 73,5 ±20 —			0 200		. 20		
0-200 (от 0 до 294) включ.) св. 20 до 200 (св. 29,4 до 294) — ±20 от 0 до 500 (от 0 до 73,5 (от 0 д		ЭX/ CL2/			±20	_	
(св. 29,4 до 294) — ±20 от 0 до 50 включ. ЭХ/ CL2/ от 0 до 500 (от 0 до 73,5 ±20 —			`				-
ЭX/ CL2/ от 0 до 500 от 0 до 50 включ. (от 0 до 73,5 ±20 —			294)		_	±20	
ЭХ/ СL2/ от 0 до 500 (от 0 до 73,5 ±20 —							-
$\frac{\partial X}{\partial L} = \frac{\partial X}{\partial L} = $			от 0 до 500		+20	_	
			(от 0 до 300	включ.)		_	
0-500 735 2) CR 50 Ho 500		0-500	`	Ź			1
(св. 73,5 до 735,2) — ±20			, , - ,		_	±20	

Тродоши	е таолицы 4			Пределы допускае- мой основной по- грешности, %		Время установ- ления	
Определяе- мый ком- понент сора		Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более	
Хлор Cl ₂	ЭX/ CL2/ 0-1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 147 включ.)	±20	_	30	
	0-1000	1470,4)	св. 100 до 1000 (св. 147 до 1470,4)	_	±20		
	ЭX/HCL/	от 0 до 1	от 0 до 0,2 включ. (от 0 до 0,3 включ.)	±15	_		
	0-1	(от 0 до 1,52)	св. 0,2 до 1 (св. 0,3 до 1,52)	_	±15		
	ЭX/HCL/ 0-10	от 0 до 10 (от 0 до 15,16)	от 0 до 1 включ. (от 0 до 1,52 включ.)	±15	_		
			св. 1 до 10 (св. 1,52 до 15,16)	_	±15		
	ЭX/HCL/ 0-50	от 0 до 50 (от 0 до 75,78)	от 0 до 5 включ. (от 0 до 7,58 включ.)	±20	-		
Хлористый			св. 5 до 50 (св. 7,58 до 75,78)	_	±20	30	
водород HCl	ЭX/HCL/	от 0 до 100 (от 0 до	от 0 до 5 включ. (от 0 до 7,58 включ.)	±20	_	30	
	0-100	151,5)	св. 5 до 100 (св. 7,58 до 151,5)	_	±20		
	ЭX/HCL/ 0-200	от 0 до 200 (от 0 до 303,14)	от 0 до 10 включ. (от 0 до 15,6 включ.)	±20	_		
	0-200		св. 10 до 200 (св. 15,6 до 303,14)	_	±20		
	ЭX/HCL/	от 0 до 500	от 0 до 50 включ. (от 0 до 75 включ.)	±20	_		
	0-500	(от 0 до 757,8)	св. 50 до 500 (св. 75 до 757,8)	_	±20		

Продолжен	ие таблицы 4	T		T		1
Опреде-	Manyahana	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускае- мой основной по- грешности, %		Время установ- ления
ляемый компо- нент	Модифика- ция сен- сора			приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	выход- ного сигнала Т _{0,9} , с, не более
	ЭX/HCL/ 0-1000	от 0 до 1000 (от 0 до 1515)	от 0 до 100 включ. (от 0 до 151,5 включ.)	±20	-	
Хлористы й водород		1313)	св. 100 до 1000 (св. 151,5 до 1515)	_	±20	20
нсі НСі	ЭX/HCL/ 0-5000	от 0 до 5000 (от 0 до	от 0 до 500 включ. (от 0 до 757,8 включ.)	±20	_	30
		7578)	св. 500 до 5000 (св. 757,8 до 7578)	_	±20	
	ЭX/ HCN / 0-10	от 0 до 10 (от 0 до 11,2)	от 0 до 0,5 включ. (от 0 до 0,56 включ.)	±15	_	
			св. 0,5 до 10 (св. 0,56 до 11,2)	_	±15	
	ЭX/ HCN / 0-30	от 0 до 30 (от 0 до	от 0 до 1 включ. (от 0 до 1,12 включ.)	±15	_	
		33,6)	св. 1 до 30 (св. 1,12 до 33,6)	_	±15	
Цианисты й водород	ЭX/ HCN / 0-100	от 0 до 100 (от 0 до 112)	от 0 до 10 включ. (от 0 до 11,2 включ.)	±15	_	10
н водород НСN	0 100	(от о до 112)	св. 10 до 100 (св. 11,2 до 112)	_	±15	
	ЭX/ HCN / 0-200	от 0 до 200 (от 0 до	от 0 до 20 включ. (от 0 до 22,4 включ.)	±15	-	
	0-200	224,7)	св. 20 до 200 (св. 22,4 до 224,7)	_	±15	
	ЭX/ HCN / 0-1000	от 0 до 1000 (от 0 до	от 0 до 100 включ. (от 0 до 112 включ.)	±20	_	
		1120)	св. 100 до 1000 (св. 112 до 1120)	_	±20	

Продолже	ние таблицы 4			Пределы д	опускае-	
				мой основной по-		Время
				грешности, %		установ-
Опреде-	Модифика-	Диапаз	он измерений	приведен-	, ·	ления
ляемый	ция сен-		ой доли, млн ⁻¹	ная к ВПИ		выход-
компо-	copa		нцентрации, мг/м ³)	(верхнему	относи-	НОГО
нент	1		,	пределу	тельная	сигнала
				диапазона		$T_{0,9}, c,$
				измерений)		не более
			от 0 до 1 включ.			
	ЭХ/ С2Н4/	от 0 до 10	(от 0 до 1,17	±20	_	
	0-10	(от 0 до	включ.)			20
	0 10	11,8)	св. 1 до 10	_	±20	
			(св. 1,17 до 11,8)		-20	
		0 100	от 0 до 10 включ.	. 20		
Этилен	ЭХ/ С2Н4/	от 0 до 100	(от 0 до 11,8	±20	_	20
C ₂ H ₄	0-100	(от 0 до 117,8)	включ.)			
			св. 10 до 100	_	±20	
			(св. 11,8 до 117,8) от 0 до 10 включ.			
	ЭX/ C2H4/ 0-200	от 0 до 200 (от 0 до 235,6)	(от 0 до 11,8	±20		
			включ.)	120	_	_
			св. 10 до 200			
			(св. 11,8 до 235,6)	_	±20	
			от 0 до 2,5 включ.			
		от 0 до 10 (от 0 до 19)	(от 0 до 4,8	±20	_	
	ЭX/C2H5O		включ.)			
	H/ 0-10		св. 2,5 до 10		120	
			(св. 4,8 до 19)	_	±20	
			от 0 до 10 включ.			
	ЭХ/С2Н5О	от 0 до 100	(от 0 до 19,3	±20	_	
	H/ 0-100	(от 0 до 193)	включ.)			
	11/ 0 100	(01 0 до 193)	св. 10 до 100	_	±20	
Этанол			(св. 19,3 до 193)		-20	
C ₂ H ₅ OH			от 0 до 30 включ.			20
	ЭХ/С2Н5О	от 0 до 300	(от 0 до 58	±20	_	
	H/ 0-300	(от 0 до 580)	включ.)			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	св. 30 до 300	_	±20	
			(св. 58 до 580)			
			от 0 до 100			
	ЭХ/С2Н5О	от 0 до 2000	включ. (от 0 до 193	±20	_	
	H/ 0-2000	(от 0 до	(от 0 до 193 включ.)			
	11/ 0-2000	3869)	св. 100 до 2000			-
		,	(св. 193 до 3869)	_	±20	
			(св. 175 до 3609)	l		

Окончание таблицы 4

Примечания:

- 1) При контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.
- 2) Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен производителем. Диапазон показаний не может быть меньше диапазона измерений.
- 3) Пересчет значений объемной доли X, млн⁻¹, в массовую концентрацию C, мг/м³, проводят по формуле: $C=X\cdot M/Vm$, где C массовая концентрация компонента, мг/м³; M молярная масса компонента, г/моль; Vm молярный объем газа-разбавителя воздуха, равный 24,06, при условиях (20 °C и 101,3 кПа по ГОСТ 12.1.005-88), дм³/моль.

Таблица 5 – Метрологические характеристики газоанализаторов с фотоионизационным

сенсором (ФИД)

Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допускаемой основной погрешности, % приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала $T_{0,9}$, с, не более
Акрило- нитрил С ₃ H ₃ N	ФИД/С ₃ H ₃ N -10	от 0 до 10 (от 0 до 22,1)	от 0 до 0,7 включ. (от 0 до 1,45 включ.) св. 0,7 до 10 (св. 1,45 до 22,1)	±20 _	±20	15

Опреде-	Тиолицы	Диапазон измерений		Пределы допус новной погреп	Время установле-	
ляемый компо- нент ¹⁾	ый Модифика- объемной до но- ция сенсора (массовой кон		й доли, млн ⁻¹ концентрации, мг/м ³)	приведенная к ВПИ (верх- нему пределу диапазона из- мерений)	относи- тельная	ния выход- ного сиг- нала Т _{0,9} , с, не более
Акро- леин	ФИД/С ₃ Н ₄ О -10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 4,98 включ.)	±20	-	
C ₃ H ₄ O	-10	24,9)	св. 2 до 10 (св. 4,98 до 24,9)	-	±20	
	ФИД/NH ₃ -		от 0 до 20 включ. (от 0 до 14,2 включ.)	±15	-	
Аммиак			св. 20 до 100 (св. 14,2 до 71)	_	±15	15
NH ₃ ФИД 1000	ФИД/NН3-	от 0 до 1000 (от 0 до 710)	от 0 до 100 включ. (от 0 до 71 включ.)	±15	-	13
	1000		св. 100 до 1000 (св. 71 до 710)	_	±15	
Арсин АsH ₃	ФИД/AsH ₃ - 3	от 0 до 3 (от 0 до 9,7)	от 0 до 0,1 включ. (от 0 до 0,32 включ.)	±20	_	15
			св. 0,1 до 3 (св. 0,32 до 9,7)	_	±20	

Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допус новной погред приведенная к ВПИ (верхнему пределу диапазона из-		Время установления выходного сигнала Т _{0,9} , с, не более
Арсин АsH ₃			от 0 до 2 включ. (от 0 до 6,48 включ.)	мерений) ±20	-	15
		32,4)	св. 2 до 10 (св. 6,48 до 32,4)	_	±20	
Ацето- нитрил	ФИД/С ₂ H ₃ N- 10 от 0 до 10 (от 0 до	от 0 до 6 включ. (от 0 до 10,2 включ.)	±15	-	15	
C ₂ H ₃ N 10	17,1)	св. 6 до 10 (св. 10,2 до 17,1)	-	±15		
	ФИД/С ₆ Н ₆ -	Д/С ₆ Н ₆ - от 0 до 10 (от 0 до 32,5)	от 0 до 4,6 включ. (от 0 до 15 включ.)	±20	-	
	10		св. 4,6 до 10 (св. 15 до 32,5)	-	±20	
Бензол	ФИД/С ₆ Н ₆ - 100	от 0 до 100	от 0 до 10 включ. (от 0 до 32,5 включ.)	±20	-	
C ₆ H ₆	100	(от 0 до 325)	св. 10 до 100 (св. 32,5 до 325)	_	±20	15
	ФИД/С ₆ H ₆ - 50 (от	от 0 до 500 (от 0 до 1625)	от 0 до 100 включ. (от 0 до 325 включ.)	±20	_	
			св. 100 до 500 (св. 325 до 1625)	_	±20	
Бензол С ₆ Н ₆	ФИД/С ₆ H ₆ - 1000	от 0 до 500 (от 0 до 162		±25	_	

	ение таолицы э	Лионого	и измороний	Пределы допус новной погрег		Время
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	н измерений й доли, млн ⁻¹ концентрации, иг/м ³)	приведенная к ВПИ (верхнему пределу диапазона измерений)	относи- тельная	установления выходного сигнала $T_{0,9}$, с, не более
	ФИД/С ₄ H ₉ O H-10	Д/С ₄ Н ₉ О от 0 до 10	от 0 до 3,2 включ. (от 0 до 9,9 включ.)	±20	-	
	11 10	30,8)	св. 3,2 до 10 (св. 9,9 до 30,8)	_	±20	
1- бутанол	ФИД/С ₄ Н ₉ О H-40	от 0 до 40 (от 0 до	от 0 до 9,7 включ. (от 0 до 29,9 включ.)	±20	-	15
С4Н9ОН	H-40	123,3)	св. 9,7 до 40 (св. 29,9 до 123,3)	-	±20	
	ФИД/С ₄ H ₉ O H-100	от 0 до 100 (от 0 до 308)	от 0 до 10 включ. (от 0 до 30,8 включ.)	±20	-	
			св. 10 до 100 (св. 30,8 до 308)	_	±20	
Бром Вг2	ФИД/Вr ₂ -2	от 0 до 0,2 і (от 0 до 1,3		±20	_	15
Бутила- цетат	ФИД/С ₆ H ₁₂ O ₂ -50	от 0 до 50	от 0 до 5 включ. (от 0 до 24,15 включ.)	±20	-	15
C ₆ H ₁₂ O ₂	02-30	241,5)	св. 5 до 50 (св. 24,15 до 241,5)	_	±20	
Бутила- цетат	ФИД/С ₆ H ₁₂		от 0 до 10 включ. (от 0 до 48,3 включ.)	±20	-	15
цетат С ₆ H ₁₂ O ₂	O ₂ -100		св. 10 до 100 (св. 48,3 до 483)	_	±20	

продолже	ние таблицы 5	T				
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	он измерений й доли, млн $^{-1}$ концентрации, иг/м 3)	Пределы допус новной погреп приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала Т _{0,9} , с, не более
1,3- бутадие н	утадие ФИД/С4Н6-		от 0 до 50 включ. (от 0 до 112 включ.)	±20	-	15
(дивини л) С ₄ Н ₆	300	(от 0 до 1125)	св. 50 до 500 (св. 112 до 1125)	_	±20	
2-бута- нон (ме- тилэтил-	ФИД/С ₄ H ₈ O- 500	от 0 до 4H ₈ O- 500 (от 0 до 1500)	от 0 до 60 включ. (от 0 до 180 включ.)	±15	-	15
кетон) С ₄ Н ₈ О	кетон)		св. 60 до 500 (св. 180 до 1500)	-	±15	
	ФИД/С ₂ H ₃ Cl -10 ФИД/С ₂ H ₃ Cl -100	от 0 до 10 (от 0 до 26)	от 0 до 1,9 включ. (от 0 до 5 включ.)	±20	-	
Винил-			св. 1,9 до 10 (св. 5 до 26)	_	±20	1.5
хлорид С ₂ H ₃ Cl			от 0 до 10 включ. (от 0 до 26 включ.)	±20	-	15
		260)	св. 10 до 100 (св. 26 до 260)	_	±20	
Винил-	ФИД/C ₂ H ₃ Cl -500	от 0 до 500 (от 0 до	от 0 до 100 включ. (от 0 до 260 включ.)	±20	_	
хлорид С ₂ H ₃ Cl	300	1300)	св. 100 до 500 (св. 260 до 1300)	_	±20	15
	ФИД/C ₂ H ₃ Cl -500/1	от 0 до 500 (от 0 до 130	00)	±25		
Гекса- фторид	ФИД/SF ₆ -	от 0 до 100	от 0 до 2 включ. (от 0 до 12,16 включ.) св. 2 до 100	±20	_	15
серы SF ₆	100	(от 0 до 608)		_	±20	

продолже	ение таблицы 5	1				
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	он измерений й доли, млн $^{-1}$ концентрации, иг/м 3)	Пределы допус новной погреп приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала Т _{0,9} , с, не более
Гекса- фторид	ФИД/SF ₆ - 100/1		от 0 до 10 включ. (от 0 до 60,8 включ.)	±20	-	15
серы SF ₆	100/1	608)	св. 10 до 100 (св. 60,8 до 608)	_	±20	
Диэти- ламин	ФИД/С ₄ H ₁₁ N-10	от 0 до 10 (от 0 до	от 0 до 3 включ. (от 0 до 9,1 включ.)	±20	_	15
C ₄ H ₁₁ N	14-10	30,4)	св. 3 до 10 (св. 9,1 до 30,4)	-	±20	
	ФИД/С ₄ H ₁₁ N-40		от 0 до 9,8 включ. (от 0 до 29,8 включ.)	±20	-	
Диэти-			св. 9,8 до 40 (св. 29,8 до 121,6)	-	±20	15
ламин С ₄ H ₁₁ N	ФИД/С ₄ H ₁₁ N-100	от 0 до 100	от 0 до 10 включ. (от 0 до 30,4 включ.)	±20	_	13
		(от 0 до 304)	св. 10 до 100 (св. 30,4 до 304)	_	±20	
	ФИД/m- С ₈ H ₁₀ -10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 8,82 включ.)	±20	-	
1,2- диметил бензол (о- ксилол) о-С ₈ H ₁₀	C81110-10	44,1)	св. 2 до 10 (св. 8,82 до 44,1)	_	±20	15
	ФИД/о-	от 0 до 100 (от 0 до 442)	от 0 до 10 включ. (от 0 до 44,2 включ.)	±15	_	13
	C ₈ H ₁₀ -100		св. 10 до 100 (св. 44,2 до 442)	_	±15	

Опреде- ляемый компо- нент ¹⁾	Модификация сенсора	объемно (массовой	н измерений й доли, млн ⁻¹ концентрации, иг/м ³)	Пределы допус новной погрег приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала Т _{0,9} , с, не более
1,3-ди- ме- тилбен- зол (м- ксилол) m-C ₈ H ₁₀	ФИД/m- С ₈ H ₁₀ -10	от 0 до 10 (от 0 до 44,1)	от 0 до 2 включ. (от 0 до 8,82 включ.) св. 2 до 10 (св. 8,82 до	±20 _	±20	15
1,3-ди- ме- тилбен- зол (м- ксилол)	ФИД/m- С ₈ H ₁₀ -100	от 0 до 100 (от 0 до 442)	44,1) от 0 до 10 включ. (от 0 до 44,2 включ.) св. 10 до 100 (св. 44,2 до	±15	±15	15
m-C ₈ H ₁₀ ФИД/-m-	ФИД/-m- С ₈ H ₁₀ -10	от 0 до 10 (от 0 до	442) от 0 до 2 включ. (от 0 до 8,82 включ.)	±20	-	
1,4-ди- ме- тилбен-	C81110 10	44,1)	св. 2 до 10 (св. 8,82 до 44,1)	_	±20	1.5
зол (п- ксилол) p-C ₈ H ₁₀	ФИД/-p- С ₈ H ₁₀ -100	от 0 до 100 (от 0 до 442)	от 0 до 10 включ. (от 0 до 44,2 включ.)	±15	-	15
			св. 10 до 100 (св. 44,2 до 442)	_	±15	
2,3-	ФИД/С ₂ H ₆ S ₂	от 0 до 2 (от 0 до	от 0 до 0,35 включ. (от 0 до 1,37 включ.)	±20	-	
дитиабу- тан (ди- метил- дисуль- фид) C ₂ H ₆ S ₂	2	7,8)	св. 0,35 до 2 (св. 1,37 до 7,8)	-	±20	15
	ФИД/C ₂ H ₆ S ₂	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 7,8 включ.)	±20	-	15
	-10	39,2)	св. 2 до 10 (св. 7,8 до 39,2)	-	±20	

Опреде-	ение таолицы 5	Диапазо	н измерений	Пределы допус		Время установле-
ляемый компо- нент ¹⁾	мый Модифика- объемной по- ция сенсора (массовой в		й доли, млн ⁻¹ концентрации, иг/м ³)	приведенная к ВПИ (верх- нему пределу диапазона из- мерений)	относи- тельная	ния выход- ного сиг- нала Т _{0,9} , с, не более
Дисуль- фид уг- лерода (серо-	ФИД/CS ₂ -10	от 0 до 10 ФИД/CS ₂ -10 (от 0 до	от 0 до 1 включ. (от 0 до 3,17 включ.)	±20	_	
углерод) CS ₂		31,7)	св. 1 до 10 (св. 3,17 до 31,7)	_	±20	
	л-	1 (()) ()	от 0 до 1 включ. (от 0 до 2,58 включ.)	±20	-	15
Диме- тил-		12,9)	св. 1 до 5 (св. 2,58 до 12,9)	-	±20	
сульфид C ₂ H ₆ S	ФИД/C ₂ H ₆ S -100	от 0 до 100	от 0 до 20 включ. (от 0 до 51,6 включ.)	±20	-	
		(от 0 до 258)	св. 20 до 100 (св. 51,6 до 258)	_	±20	
1,2-ди- хлор- этан	ФИД/С ₂ H ₄ Cl ₂ -20	от 0 до 20 (от 0 до	от 0 до 2 включ. (от 0 до 8,23 включ.)	±20	-	15
C ₂ H ₄ Cl ₂	2-20	82,3)	св. 2 до 20 (св. 8,23 до 82,3)	-	±20	
Димети-	ФИД/С ₂ Н ₆ О-	от 0 до 500	от 0 до 100 включ. (от 0 до 192 включ.)	±15	-	15
эфир С ₂ H ₆ O	500 (0	(от 0 до 958)	св. 100 до 500 (св. 192 до 958)	_	±15	

Продолис	ение таблицы 5			Пределы допус	каемой ос-	
				новной погрешности, %		Время
Опреде-		' '	н измерений	приведенная к		установле-
ляемый	' ' 1		объемной доли, млн ⁻¹			ния выход-
компо- нент ¹⁾	ция сенсора		концентрации,	ВПИ (верх- нему пределу	относи-	ного сиг-
		N	иг/м ³)	диапазона из-	тельная	нала Т _{0,9} , с,
				мерений)		не более
			от 0 до 0,2	меренину		
			включ.	. 20		
	ФИД/С2Н7N	от 0 до 3	(от 0 до 0,5	± 20	_	
	O-3	(от 0 до	включ.)			
Моноэта		7,6)	св. 0,2 до 3		+ 20	
ноламин			(св. 0,5 до 7,6)	_	± 20	
(2-			от 0 до 2			15
аминоэт анол)			включ.	± 20		
анол) С ₂ H ₇ NO	фИП/С.И.N	от 0 до 10	(от 0 до 5,1	± 20	_	
C211/110	ФИД/С ₂ H ₇ N O-10	(от 0 до	включ.)			
		25,4)	св. 2 до 10			
			(св. 5,1 до	_	± 20	
			25,4)			
		от 0 до 10 (от 0 до 23,3)	от 0 до 2	±20		
			включ.		_	
	ФИД/С ₄ Н ₈ - 10		(от 0 до 4,6	-20	_	
			включ.)			
			св. 2 до 10		120	
			(св. 4,6 до	_	± 20	
2			23,3)			15
2-ме-			от 0 до 10			
тилпро-		от 0 до	ВКЛЮЧ.	±20	_	
пен (изо-	ФИД/С ₄ Н ₈ -	100	(от 0 до 23,3 включ.)			
бутилен) (ЛОС по	100	(от 0 до	св. 10 до 100			
изобути-		233)	(св. 23,3 до		±20	
лену)			233)	_	±20	
i-C ₄ H ₈			от 0 до 100			
1 04110			включ.			
	ФИД/С ₄ Н ₈ -	от 0 до	(от 0 до 233	±15	_	
		1000	включ.)			
	1000	(от 0 до	св. 100 до			15
		2330)	1000			
			(св. 233 до	_	±15	
			2330)			

Опреде- ляемый Модифика-			Диапазон измерений объемной доли, млн ⁻¹		каемой ос-	Время установле-
компо- нент ¹⁾	ция сенсора	(массовой	и доли, млн концентрации, иг/м ³)	ВПИ (верх- нему пределу диапазона из- мерений)	относи- тельная	ния выход- ного сиг- нала Т _{0,9} , с, не более
2- метилпр опен (изобути	от 0 до ФИД/i-C ₄ H ₈ -	от 0 до 500 включ. (от 0 до 1165 включ.)	±15	-		
лен) (ЛОС по изобути лену) i-C ₄ H ₈	6000	(от 0 до 13980)	св. 500 до 6000 (св. 1165 до 13980)	_	±15	15
	ФИД/СН ₃ О H-10	ФИД/СН ₃ О от 0 до 10 от 0 до 10 от 13,3)	от 0 до 3,75 включ. (от 0 до 4,98 включ.)	±15	-	15
			св. 3,75 до 10 (св. 4,98 до 13,3)	-	±15	
Метанол СН ₃ ОН	ФИД/СН ₃ О	H-40 (от 0 до 53,2) от 0 до 40 (от 0 до	от 0 до 11,2 включ. (от 0 до 14,9 включ.)	±15	-	
CH3OH	11-40		св. 11,2 до 40 (св. 14,9 до 53,2)	-	±15	15
	ФИД/СН₃О Н-40		от 0 до 10 включ. (от 0 до 13,3 включ.)	±20	-	15
	11 40	53,2)	св. 10 до 40 (св. 13,3 до 53,2)	_	±20	
	ФИД/С7Н8-	от 0 до 10 (от 0 до 38,3)	от 0 до 2 включ. (от 0 до 7,66 включ.)	±20	-	15
	10		св. 2 до 10 (св. 7,66 до 38,3)	_	±20	

Продолже	ние таблицы 5	ı		T		1
				Пределы допус	Время	
Опреде-		Диапазо	н измерений	_	иности, %	установле-
ляемый	Модифика- ция сенсора		й доли, млн ⁻¹	приведенная к		ния выход-
компо-			концентрации,	ВПИ (верх-	жаемой ос- шности, % относи- тельная - ±15 - ±20 - ±20	ного сиг-
нент ¹⁾	Zim comospi	($M\Gamma/M^3$)	нему пределу		нала Т _{0,9} , с,
ii cii i		1	11/11)	диапазона из-	Tesibilasi	не более
			T	мерений)		110 003100
			от 0 до 13			
			включ.	±15	_	
	ФИД/С7Н8-	от 0 до 40	(от 0 до 49,8			
	40	(от 0 до	включ.)			
	10	153,3)	св. 13 до 40			
Метилбе			(св. 49,8 до	_	±15	
нзол			153,3)			15
(толуол)			от 0 до 13			13
C_7H_8		0	включ.	. 1.5		
	AUT/C II	от 0 до	(от 0 до 49,8	±15	_	
	ФИД/С7Н8-	100	включ.)			
	100	(от 0 до	св. 13 до 100			
		383)	(св. 49,8 до	_	±15	
			383)			
			от 0 до 0,4			
	ФИД/CH₃SH -10	от 0 до 10 (от 0 до 20)	включ.	. 20	_	
			(от 0 до 0,8	±20		
Метан-			включ.)			
ТИОЛ			св. 0,4 до 10		• • •	
(метил-			(св. 0,8 до 20)	_	±20	
меркап-			от 0 до 2			15
тан)			включ.	• •		
CH ₃ SH	ФИД/CH₃SH	от 0 до 20	(от 0 до 4	±20	_	
	-20	(от 0 до	включ.)			
		40)	св. 2 до 20			
			(св. 4 до 40)	_	±20	
			от 0 до 0,5			
			включ.			
Муравь-		от 0 до 10	(от 0 до 0,96	±20	_	
иная	ФИД/СН ₂ О ₂ -	(от 0 до 10	включ.)			15
кислота	10	19,1)	св. 0,5 до 10			
CH_2O_2		15,1)	(св. 0,96 до	_	+20	
			19,1)		-20	
			от 0 до 100			
			включ.			
2-ме-		от 0 до	(от 0 до 241	±15	_	
тилпро-	ФИД/С4Н10-	1000	включ.)			
пан (изо-	1000	(от 0 до	св. 100 до			15
бутан)	-000	2417)	1000 1000			
i-C ₄ H ₁₀		, ,	(св. 241 до	_	±15	
			2417)			
		<u> </u>	<u>~ 11 /)</u>			

Опреде- ляемый Модифика- Диапазон измерений объемной доли, млн ⁻¹ приведенная к ВПИ (верх-	Время становле-
Опреде- ляемый Модифика- Диапазон измерений приведенная к ни объемной доли, млн ⁻¹	-
ляемый Модифика- объемной доли, млн-1 приведенная к	становле-
	ия выход-
т компо- т ния сенсора т гмассовой концентрации т т т т относи- т н	ного сиг-
	ала Т _{0,9} , с,
	не более
мерений)	
2-метил- от 0 до 3	
1-пропа- включ. ±20 —	
нол _{ФИЛ/Сино} от 0 до 20 (от 0 до 9,2	
(изобу-	15
танол) 61,6) св. 3 до 20	
і- (св. 9,2 до — ±20	
C ₄ H ₉ OH 61,6)	
от 0 до 50	
от 0 до ВКЛЮЧ. ±15 —	
1 1 1 1 1 1 1 1 1 1	
RKTHOU)	
500 (от 0 до 2084) (св. 50 до 500 (св. 200)	
(св. 208 до – ±15	
2084)	
н-гептан С ₇ H ₁₆ от 0 до 100	15
ВКЛЮЧ. ±15	
от 0 до (от 0 до 416 = 13 -	
ФИД/С7Н16- 2000 включ.)	
2000 (от 0 до св. 100 до	
8334) 2000 - ±15	
(св. 416 до	
8334)	
от 0 до 84	
от 0 до ВКЛЮЧ. ±20 —	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15
С61114 1000 (61 0 Дб) св. 84 до 1000 (61 0 Дб) (7201	
(св. 301 до — ±20	
3584)	
от 0 до 3,7	
ВКЛЮЧ. ±20 —	
$ Hadra_{-} $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15
C ₁₀ H ₈	
(св. 19,7 до – ±20	
53,3)	

Опреде- ляемый компо- нент ¹⁾	Модифика-ция сенсора	объемно (массовой	н измерений й доли, млн ⁻¹ концентрации, иг/м ³)	Пределы допус новной погреп приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала $T_{0,9}$, с, не более
	ФИД/С ₅ H ₁₀ O ₂ -10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 8,5 включ.)	±20	_	
н- пропила	02 10	42,5)	св. 2 до 10 (св. 8,5 до 42,5)	-	±20	15
цетат С ₅ H ₁₀ O ₂	ФИД/С ₅ H ₁₀ O ₂ -100	от 0 до 100 (от 0 до	от 0 до 30 включ. (от 0 до 127,5 включ.)	±20	_	13
	02 100	425)	св. 30 до 100 (св. 127,5 до 425)	-	±20	
2-пропанон	ФИД/С ₃ Н ₆ О-	от 0 до 1000	от 0 до 80 включ. (от 0 до 193 включ.)	±15	-	15
(ацетон) С ₃ H ₆ O	1000	(от 0 до 2415)	св. 80 до 1000 (св. 193 до 2415)	-	±15	
Пропи- лен (пропен)	ФИД/С ₃ Н ₆ -	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 3,5 включ.)	±15	-	15
C ₃ H ₆	10	17,5)	св. 2 до 10 (св. 3,5 до 17,5)	-	±15	
	ФИД/С ₃ H ₆ - 100		от 0 до 10 включ. (от 0 до 17,5 включ.)	±20	-	
Пропи- лен (пропен) С ₃ H ₆		175)	св. 10 до 100 (св. 17,5 до 175)	-	±20	15
	Φ ИД/С ₃ H ₆ - 30	от 0 до 300	от 0 до 50 включ. (от 0 до 93,5 включ.)	±15	_	13
	300	(от 0 до 561)	св. 50 до 300 (св. 93,5 до 561)	_	±15	

Опреде-	ение таолицы 5	Лианаза	н измерений	Пределы допус новной погрег		Время
ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	н измерении й доли, млн ⁻¹ концентрации, пг/м ³)	приведенная к ВПИ (верх- нему пределу диапазона из- мерений)	относи- тельная	установления выходного сигнала $T_{0,9}$, с, не более
2 45040	ФИД/i- C ₃ H ₇ OH-10	от 0 до 10 (от 0 до 25)	от 0 до 4 включ. (от 0 до 10 включ.)	± 20	-	
2-пропа-		[23)	св. 4 до 10 (св. 10 до 25)	_	± 20	1.5
(изопро- панол) і- С ₃ H ₇ OH	ФИД/i- C ₃ H ₇ OH-100	от 0 до 100 (от 0 до	от 0 до 20 включ. (от 0 до 50 включ.)	± 20	_	15
		255)	св. 20 до 100 (св. 50 до 255)	_	± 20	
Тетра- этилор- тосили- кат	ФИД/С ₈ H ₂₀ O ₄ Si-100	от 0 до 100	от 0 до 2 включ. (от 0 до 17,3 включ.)	±20	-	15
(TEOC) C ₈ H ₂₀ O ₄ Si	O4SI-100	(от 0 до 86,6)	св. 2 до 10 (св. 17,3 до 86,6)	_	±20	
2,6- толуи- ленди- изоциа-	ФИД/С ₃ С ₆ Н ₃	от 0 до 1 (от 0 до	от 0 до 0,1 включ. (от 0 до 0,72 включ.)	±20	-	15
нат С ₃ С ₆ Н ₃ (NCO) ₂	(NCO) ₂ -1	7,24)	св. 0,1 до 1 (св. 0,72 до 7,24)	-	±20	
Уксус- ная кис- лота С ₂ H ₄ O ₂	$\left \frac{\Psi H H C_2 H_4 O}{2-100} \right $ (or	от 0 до 10 (от 0 до 25)	от 0 до 2 включ. (от 0 до 5 включ.)	± 20	-	
			св. 2 до 10 (св. 5 до 25)	-	± 20	15
	ФИД/C ₂ H ₄ O ₂ -100	от 0 до 100 (от 0 до 250))	±20	_	

Опреде-	ение таолицы э	Диапазон измерений		Пределы допус новной погрег		Время установле-
ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	диапазон измерении объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		относи- тельная	ния выход- ного сиг- нала Т _{0,9} , с, не более
	ФИД/С ₈ Н ₈ -	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 8,6 включ.)	±20	_	
	10	43,3)	св. 2 до 10 (св. 8,6 до 43,3)	-	±20	
Фенилэт илен	$\begin{bmatrix} \Phi H / C_8 H_8 - \\ 40 \end{bmatrix}$	1 ((3)) (1)	от 0 до 6,9 включ. (от 0 до 29,9 включ.)	±20	-	
(стирол) (винилб ензол) С ₈ Н ₈			св. 6,9 до 40 (св. 29,9 до 1732)	-	±20	15
C8118	ФИД/С ₈ H ₈ - 500		от 0 до 100 включ. (от 0 до 433 включ.)	±20	_	
			св. 100 до 500 (св. 433 до 2165)	_	±20	
	ФИД/С ₈ H ₈ - 1000	от 0 до 500 (от 0 до 2165)		±20	_	
Фурфу-	ФИД/C ₅ H ₆ O	Д/С ₅ Н ₆ О от 0 до 10	от 0 до 2 включ. (от 0 до 8,6 включ.)	±20	-	15
спирт С ₅ H ₆ O ₂	2-10		св. 2 до 10 (св. 8,6 до 40,8)	_	±20	
Фор-	ФИД/CH ₂ O-	от 0 до 10 (от 0 до	от 0 до 0,4 включ. (от 0 до 0,5 включ.)	± 20	_	15
гид СН ₂ О	1 1 1 1 1 1 1	10 (2.5)	св. 0,4 до 10 (св. 0,5 до 12,5)	_	± 20	

продолже	ние таблицы 5	1		1		, , , , , , , , , , , , , , , , , , ,
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	он измерений й доли, млн $^{-1}$ концентрации, мг/м 3)	Пределы допус новной погреп приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала $T_{0,9}$, с, не более
	ФИД/С ₆ H ₅ O H-3	от 0 до 3 (от 0 до	от 0 до 0,25 включ. (от 0 до 0,98 включ.)	±20	-	
	п-3	11,74)	св. 0,25 до 3 (св. 0,98 до 11,74)	-	±20	
Фенол С ₆ Н ₅ ОН	$\Psi H H / C_6 H_5 O$	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 7,8 включ.)	±20	-	15
C6115O11	H-10	39,1)	св. 2 до 10 (св. 7,8 до 39,1)	-	±20	
	ФИД/С ₆ H ₅ O H-100	от 0 до 100	от 0 до 10 включ. (от 0 до 39,1 включ.)	±20	-	
	H-100	(от 0 до 390)	св. 10 до 100 (св. 39,1 до 390)	-	±20	
Фосфин РН ₃	ФИД/РН3-10	от 0 до 10 (от 0 до	от 0 до 1 включ. (от 0 до 1,4 включ.)	±20	_	15
F113		14,1)	св. 1 до 10 (св. 1,4 до 14,1)	-	±20	15
2.5 day	ФИД/С4Н2О	от 0 до 3 (от 0 до	от 0 до 0,25 включ. (от 0 до 1,02 включ.)	±20	-	
2,5-фу- рандион (малеи-	3-3	12,2)	св. 0,25 до 3 (св. 1,02 до 12,2)	_	±20	15
новый ангид- рид) С ₄ H ₂ O ₃	ФИД/С ₄ H ₂ O 3-10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 8,16 включ.)	±20	-	13
	3-10	40,8)	св. 2 до 10 (св. 8,16 до 40,8)	_	±20	

продолже	ение таблицы 5	1		T		
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	он измерений й доли, млн $^{-1}$ концентрации, мг/м 3)	Пределы допус новной погрец приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала Т _{0,9} , с, не более
Хлори- стый бензил	ФИД/С ₇ H ₇ Cl -10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 10,5 включ.)	±20	-	15
C ₇ H ₇ Cl	-10	52,67)	св. 2 до 10 (св. 10,5 до 52,67)	-	±20	
Цикло- гексан С ₆ H ₁₂	ФИД/С ₆ H ₁₂ - 100	от 0 до 100 (от 0 до	от 0 до 20 включ. (от 0 до 70 включ.)	±20	-	15
C01112		350)	св. 20 до 100 (св. 70 до 350)	_	±20	
Цикло- гексанон С ₆ H ₁₀ O	ФИД/С ₆ H ₁₀ О-20	от 0 до 20 (от 0 до 70)	от 0 до 2 включ. (от 0 до 7 включ.)	±20	_	15
C61110O		70)	св. 2 до 20 (св. 7 до 70)	_	±20	
Этил- целло- зольв (2-	ФИД/С ₄ H ₁₀ O ₂ -20	от 0 до 20 (от 0 до	от 0 до 2 включ. (от 0 до 7,5 включ.)	±20	-	15
этокси- этанол) С ₄ H ₁₀ O ₂	S2 20	75)	св. 2 до 20 (св. 7,5 до 75)	-	±20	
	ФИД/С ₂ Н ₄ - 300	от 0 до 300 (от 0 до	от 0 до 20 включ. (от 0 до 23,4 включ.)	±20	-	
D	300	351)	св. 20 до 300 (св. 23,4 до 351)	-	±20	
Этилен С ₂ Н ₄	ФИД/С ₂ Н ₄ -	от 0 до 1800	от 0 до 100 включ. (от 0 до 117 включ.)	±20	_	15
	1800	(от 0 до 2106)	св. 100 до 1800 (св. 117 до 2106)	_	±20	

Опреде-	ние таолицы 3	Диапазон измерений		Пределы допус новной погреп		Время установле-
ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	диапазон измерении объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		относи- тельная	ния выход- ного сиг- нала Т _{0,9} , с, не более
Этила- цетат	ФИД/С4Н8О	от 0 до ФИД/С ₄ H ₈ O 100 2-100 (от 0 до	от 0 до 13 включ. (от 0 до 47,6 включ.)	±20	_	15
C ₄ H ₈ O ₂	2 100	366)	св. 13 до 100 (св. 47,6 до 366)	_	±20	
Этан-	ФИД/С ₂ H ₅ S H-10	от 0 до 10 (от 0 до 25,8)	от 0 до 0,4 включ. (от 0 до 1 включ.)	±20	_	
тиол		23,0)	св. 0,4 до 10 (св. 1 до 25,8)	_	±20	
(этил- меркап- тан) С ₂ H ₅ SH	ФИД/C ₂ H ₅ S H-20	' ' (ОТ П ПО	от 0 до 2 включ. (от 0 до 5,16 включ.)	±20	-	15
			св. 2 до 20 (св. 5,16 до 51,6)	_	±20	
	ФИД/C ₂ H ₅ O H-10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 3,84 включ.)	± 20	-	
	11-10	19,2)	св. 2 до 10 (св.3,84 до 19,2)	-	± 20	
Этанол С ₂ Н ₅ ОН	ФИД/С ₂ H ₅ O от 0 до 100 н-100 (от 0 до 192)	от 0 до /C ₂ H ₅ O 100	от 0 до 10 включ. (от 0 до 19,2 включ.)	± 20	-	15
		192)	св. 10 до 100 (св.19,2 до 192)	_	± 20	
	ФИД/C ₂ H ₅ O H-1000	от 0 до 500 (от 0 до 960))	± 20	_	

продолже	ение таблицы 5	1		T		,
Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	объемно (массовой	он измерений ой доли, млн $^{-1}$ концентрации, мг/м 3)	Пределы допус новной погрег приведенная к ВПИ (верхнему пределу диапазона измерений)		Время установления выходного сигнала $T_{0,9}$, с, не более
Этанол	ФИД/С2Н5О	от 0 до Д/С ₂ Н ₅ О 2000	от 0 до 500 включ. (от 0 до 960 включ.)	± 15	-	15
C ₂ H ₅ OH	H-2000	(от 0 до 3840)	св. 500 до 2000 (св. 960 до 3840)	_	± 15	13
Эпихлор гидрин	ФИД/С ₃ H ₅ Cl O-10	от 0 до 10 (от 0 до	от 0 до 2 включ. (от 0 до 7,7 включ.)	±20	_	15
C ₃ H ₅ ClO	0 10	38,5)	св. 2 до 10 (св. 7,7 до 38,5)	_	±20	
	ФИД/С ₈ Н ₁₀ -	1 ((3): (1))(3)	от 0 до 2 включ. (от 0 до 8,8 включ.)	±20	-	
	10	44,1)	св. 2 до 10 (св. 8,8 до 44,1)	-	±20	
Этилбен	ФИД/С ₈ H ₁₀ -	от 0 до 100 (от 0 до	от 0 до 10 включ. (от 0 до 44,1 включ.)	± 15	-	
зол C ₈ H ₁₀	100	441)	св. 10 до 100 (св. 44,1 до 441)	_	± 15	15
	ФИД/С ₈ Н ₁₀ - от 0 до 500 (от 0 до 2205)	500	от 0 до 100 включ. (от 0 до 441 включ.)	± 15	-	
		`	св. 100 до 500 (св. 441 до 2205)	_	± 15	
	ФИД/С ₈ H ₁₀ - 500	от 0 до 500 (от 0 до 220		± 25	_	
Пары	ФИД/ПН/35	от 0 до 3500	от 0 до 300 мг/м 3 включ.	±15	-	15
нефти ¹⁾	00	мг/м ³	св. 300 до 3500 мг/м ³	_	±15	

Опреде- ляемый компо- нент ¹⁾	Модифика- ция сенсора	Диапазон измерений объемной доли, млн ⁻¹ (массовой концентрации, мг/м ³)		Пределы допус новной погрег приведенная к ВПИ (верх- нему пределу диапазона из- мерений)		Время установления выходного сигнала $T_{0,9}$, с, не более	
Пары бен-	ФИД/ПН/35	от 0 до 3500	от 0 до 100 мг/м ³ включ.	±15	_	15	
зина ²⁾	00	$M\Gamma/M^3$	св. 100 до 3500 мг/м ³	_	±15		
Пары керо-	ФИД/ПН/35	от 0 до 3500	от 0 до 300 мг/м ³ включ.	±15	_	15	
сина ³⁾	00	мг/м ³	св. 300 до 3500 мг/м ³	_	±15	13	
Пары дизель-	ФИД/ПН/35	от 0 до	от 0 до 300 мг/м 3 включ.	±15	_		
ного топ- лива ⁴⁾	00		3500 мг/м ³	св. 300 до 3500 мг/м ³	_	±15	15
Пары	ФИД/ПН/35	от 0 до 3500	от 0 до 300 мг/м 3 включ.	±15	ı	15	
уайт- спирта ⁵⁾	00	3300 мг/м ³	св. 300 до 3500 мг/м ³	_	±15	13	
Пары авиаци-	ФИД/СхНу/	от 0 до	от 0 до 300 мг/м ³ включ.	±20	-		
онного топлива 6)	3500	3500 мг/м ³	св. 300 до 3500 мг/м ³	-	±20	15	
Пары ∑СхНу	ФИД/СхНу/	от 0 до 3500	от 0 до 300 мг/м 3 включ.	±20	_	15	
(по про- пану)	3500	мг/м ³	св. 300 до 3500 мг/м ³	_	±20	13	

Окончание таблицы 5

Примечания:

- 1) При контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.
- 2) Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен производителем. Диапазон показаний не может быть меньше диапазона измерений.
 - 3) Пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002.
- 4) Пары нефтепродуктов являются смесью углеводородов, поэтому газоанализатор градуируется по конкретной марке топлива, с указанием марки в паспорте на прибор.
- 5) Сумма углеводородов ($\sum CxHy$) суммарное содержание предельных углеводородов: этан (C_2H_6), пропан (C_3H_8), бутан (C_4H_{10}), пентан (C_5H_{12}), гексан (C_6H_{14}), гептан (C_7H_{16}), октан (C_8H_{18}), нонан (C_9H_{20}), декан ($C_{10}H_{22}$).
 - ¹⁾ Пары нефти по ГОСТ Р 51858-2002.
 - ²⁾ Пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002.
 - ³⁾ Пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86.
 - ⁴⁾ Пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ Р 52368-2005.
 - ⁵⁾ Уайт-спирит по ГОСТ 3134-78.
 - 6) Пары авиационного топлива по ГОСТ 1012-2013.

Таблица 6 – Дополнительные метрологические характеристики

Наименование характеристики	Значение
Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды от -55 °C до +15 °C включ. и св. +25 °C до +55 °C на каждые 10 °C, в долях от пределов допускаемой основной погрешности	±0,25

Таблица 7 – Технические характеристики

Howard Power August Control of the C	2
Наименование характеристики	Значение
Габаритные размеры газоанализаторов	
(длина×ширина×высота), мм, не более:	
– КИП-МГс	32×32×40
− КИП-МГ1	93×52×30
– КИП-МГ4	130×74×37
− КИП-MГ5	162×75×46
Масса, кг, не более:	
– КИП-МГс	0,03
− КИП-МГ1	0,098
– КИП-МГ4	0,33
− КИП-MГ5	0,45
Напряжение питания от аккумуляторной батареи, В	3,7
Рабочие условия эксплуатации:	
– температура окружающего воздуха, °С	от -55 до +55
– относительная влажность (без конденсации влаги), %, не более	98
– атмосферное давление, кПа	от 80 до 120
Степень защиты IP* по ГОСТ 14254-2015 (для мод. КИП-МГ1,	IP 66/67/68
КИП-МГ4, КИП-МГ5)	IF 00/07/08

Окончание таблицы 7

Наименование характеристики	Значение
Маркировка взрывозащиты (для мод. КИП-МГ1, КИП-МГ4,	P0 Ex da ia I Ma X / P0 Ex
КИП-МГ5)	ia I Ma X
	0Ex da ia IIC T4 Ga X/ 0Ex
	ia IIC T4 Ga X
*В зависимости от заказа	

Таблица 8 – Показатели надежности

Наименование характеристики	Значение
Средняя наработка на отказ, ч, не менее	35000
Средний срок службы, лет, не менее	15

Знак утверждения типа

наносится на титульный лист паспорта типографским методом.

Комплектность средства измерений

Таблица 9 – Комплектность средства измерений

Наименование	Обозначение	Количество
Газоанализатор портативный	КИП-МГ	1 шт.
Руководство по эксплуатации	ГСБФ.5977.00.00.00С РЭ/ПС ГСБФ.5977.00.00.001 РЭ ГСБФ.5977.00.00.004 РЭ ГСБФ.5977.00.00.005 РЭ	1экз.1)
Паспорт	ГСБФ.5977.00.00.00С РЭ/ПС ГСБФ.5977.00.00.001 ПС ГСБФ.5977.00.00.004 ПС ГСБФ.5977.00.00.005 ПС	1 экз.
Упаковка	_	1 шт.
Программное обеспечение (ПО)	_	1 ²⁾ экз.
Калибровочная насадка	_	1 ²⁾ шт.
Коммуникационный кабель	-	1 ²⁾ шт.
Зарядное устройство	-	1 ²⁾ шт.

^{1) –} один экземпляр на партию;

Сведения о методиках (методах) измерений

приведены в разделе 2.3 «Методы измерений газоанализаторов» документов ГСБФ.5977.00.00.00 РЭ/ПС «Газоанализаторы портативные КИП-МГ модификации КИП-МГс. Руководство по эксплуатации», ГСБФ.5977.00.00.001 РЭ «Газоанализаторы портативные КИП-МГ модификации КИП-МГ1. Руководство по эксплуатации», ГСБФ.5977.00.00.004 РЭ «Газоанализаторы портативные КИП-МГ модификации КИП-МГ4. Руководство по эксплуатации», ГСБФ.5977.00.00.005 РЭ «Газоанализаторы портативные КИП-МГ модификации КИП-МГ5. Руководство по эксплуатации».

^{2) –} поставляется по отдельному заказу

Нормативные документы, устанавливающие требования к средству измерений

Приказ Росстандарта от 31 декабря 2020 г. № 2315 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 4.43);

ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия»;

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»;

ГОСТ Р 52350.29.1-2010 «Взрывоопасные среды. Часть 29-1. Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов»;

ГОСТ IEC 60079-29-1-2013 «Взрывоопасные среды. Часть 29-1. Газоанализаторы. Требования к эксплуатационным характеристикам газоанализаторов горючих газов»;

ГОСТ 24032-80 «Приборы шахтные газоаналитические. Общие технические требования. Методы испытаний»;

ГСБФ 5977.00.00.000 ТУ «Газоанализаторы портативные КИП-МГ. Технические условия».

Правообладатель

Общество с ограниченной ответственностью «КИП-консалт» (ООО «КИП-консалт») ИНН 7719498042

Юридический адрес: 105318, г. Москва, ул. Ибрагимова, д. 31, к. 10, эт./помещ. 2/9

Телефон (факс): +7 (495) 136-74-22

E-mail: info@ kipkonsalt. ru, kipkonsalt@gmail.ru

Изготовитель

Общество с ограниченной ответственностью «КИП-консалт» (ООО «КИП-консалт») ИНН 7719498042

Юридический адрес: 105318, г. Москва, ул. Ибрагимова, д. 31, к. 10, эт./помещ. 2/9 Адреса мест осуществления деятельности:

105318, г. Москва, ул. Ибрагимова, д. 31, к. 10, эт/помещ. 2/9;

105043, г. Москва, ул. 7-я Парковая, д. 5, к. 1, помещ. 1/1

Телефон (факс): +7 (495) 136-74-22

E-mail: info@ kipkonsalt. ru, kipkonsalt@gmail.ru

Испытательные центры

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Юридический адрес: 119415, г. Москва, пр-кт Вернадского, д. 41, стр. 1, помещ. I, ком. 28

Адрес места осуществления деятельности:

142300, Московская обл., Чеховский р-н, г. Чехов, Симферопольское ш., 2

Телефон: + 7 (495) 481-33-80 E-mail: info@prommashtest.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312126.

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ Метрология» (ООО «ПРОММАШ ТЕСТ Метрология»)

Юридический адрес: 119415, г. Москва, пр-кт Вернадского, д. 41, стр. 1, эт. 4, помещ. I, ком. 28

Адрес места осуществления деятельности: 142300, Чеховский р-н, г. Чехов, Симферопольское ш., д. 2

Телефон: +7 (495) 481-33-80

E-mail: info@metrologiya.prommashtest.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314164.